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Geometrical consequences of foam equilibrium
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Equilibrium conditions impose nontrivial geometrical constraints on the configurations that a two-
dimensional foam can attain. In the first place, the three centers of the films that converge to a vertex have to
be on a line, i.e., all vertices aedigned Moreover, an equilibrated foam must admitegiprocal figure This
means that it must be possible to find a set of poRten the plane, one per bubble, such that the segments
P;P; are normal to the corresponding foam films. It is furthermore shown that these constraints are equivalent
to the requirement that the foam be a sectional multiplicative Vorgastition (SMVP). A SMVP is a cut
with a two-dimensional plane of a three-dimensional multiplicative Voromartition. Thus, given an arbi-
trary equilibrated foam, we can always find pointlike sour¢ese per bubblein three dimensions that
reproduce this foam as a generalized Voropartition. These sources are the only degrees of freedom that we
need in oder to describe the foam full{61063-651X97)14405-1

PACS numbe(s): 82.70.Rr, 02.40.Sf, 02.40.Dr

[. INTRODUCTION On the other hand, an efficient method for the numerical
simulation of ideal foams would also be highly desirable,
Cellular structure§1—4] appear in a wide range of natural and we propose that such a method could be obtained by
phenomena, and have puzzled and fascinated scientists fexkploiting the equivalence between foams and VP’s reported
decade$5]. They can be generally described as packings ofn this work. More precisely, we establish the followingr-
space-filling cells of roughly polygonal shape, separated byespondencebetween equilibrated two-dimensional foams
thin interfaces to which a surface energy is associated. ThefEF's) and a generalization of VP’s, the sectional multiplica-
arise as a consequence of competition between domains utive Voronol partition (SMVP): Given an arbitrary EF, it is
der the constraint of space filling, and there is often somealways possible to find sources in space such that a SMVP
mechanism, such as the migration of a conserved quantityith respect to them exactly gives this foam.
across the interface, which makes them evolve in time, i.e., In Sec. Il the VP and its generalizations are reviewed. The
coarsen. Foams such as those obtained by shaking soapinplest generalizations of the VP concept are the sectional
water are the examples of cellular structures closest to oWworonoi partition and the multiplicative Voronopartition.
everyday experience. Two-dimensional foams may be obThese correspond to adding a constant to (dwuare dis-
tained by confining a soap froth between two closely spacethnce, and to multiplying it by a constant, respectively. At
glass plates. In spite of their apparent simplicity, foams disthe end of this section a combination of both is introduced,
play much of the phenomenology appearing in coarseninghe sectional multiplicative Voronoipartition. We will use
cellular structures. Foams have been the subject of intereghis partition in order to describe foams.
since their relevance in the problem of grain growth was The demonstration of the above-mentioned correspon-
pointed out by Smiti{6]. Despite the attention they have dence between foams and SMVP's is divided in two parts
received, the understanding of their dynamical propertiegSecs. Il and IV for clarity. In Sec. lll, therecognition
proved to be a tricky problem. Even some of the most basi@roblem for SMVP’s is solved. The recognition problem
issues, such as their asymptotic scaling properties, has beeransists in giving the sufficient geometrical conditions that a
matter of debate until recentlisee references abgveNu- circular partition has to satisfy in order to be a SMVP. We
merically exact simulation procedurgd, as well as analyti- will see that if a circular partition has all of its vertices
cal [8] and numerica[9] approximations, have been useful alignedand admits amriented reciprocal figurgthen it is a
in understanding the dynamics of ideal foams, but the syster8BMVP. In other words, it is always possible to find sources
sizes accessible to available simulation procedures ari@ three-dimensional space that give this circular partition as
strongly limited(for a complete account, see R€fi3,4)). a SMVP. In this section we also describe the procedure to
A satisfactory theoretical framework for the description of find the sources when these conditions are met. Some mate-
foams has not yet been achieved. The main result of thisial that is needed in this section is described in the Appen-
work consists in establishingrggorous connectiorbetween  dixes.
foams and Voronol partitions(VP’s). This connection pro- Section IV deals with the equilibrium conditions for
vides a set of fundamental degrees of freedom for the foarfoams and its geometrical consequences. We start by writing
(the source’s locations in spagcand therefore constitutes a the force and pressure equilibrium conditions in compact
step toward the above-mentioned theoretical understandingorm in Sec. IV A. In Secs. IV B and IV C, it is shown that
an equilibrated foam has all of its verticaigned and ad-
mits anoriented reciprocal figurerespectively. Therefore all
*Permanent address: IF-UFF, CEP 24210-340, Niteroi RJ, Brazilequilibrated foams satisfy the conditions required in Sec. Ill,
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FIG. 2. A sectional Voronopartition (SVP) of the plane is
defined by intersecting a three-dimensional Voropartition with
that plane. SourceB; of this SVP (black dot$ are the projections

FIG. 1. Shown is a Vororiopartition of two-dimensional space ©Of the three-dimensional sourcés (white dot$ onto _the plane.
with respect to pointlike sourced;} (black dot$. Each sourcd;  InterfacesI’;; between cells are rectilinear, normal BP;, and
has an associated c€ll, , which is the subset of space that is closer meet at triple vertices; , but arenotequidistant from the sources.
to f; than to any other source. Interfacgg (thick lines are equi- ~ Sources with a too large value gf (for exampleP, in this figure
distant from the sources whose cells they delimit. Three interfacego not have an associated cell.

[y, Ty, andT'y; meet at a vertexw;;,, which is therefore the
center of a circlédashedg through the three corresponding sources.

ticular configurations, that is, we will assurgenericsource

. . . .__locations. Under this assumption, all vertices are of multi-
and can be described as SMVP’s. Finally in Sec. V the im- licity three P

plications of this result are discussed, and some perspectives The concept defining Vorofigpartitions isequidistance

for future work are advanced. . ) X .

A simple way to generalize them is to change the way in
which distances to the sources are measured. One lets each
source measure the distance to poitsccording to its own
A. Voronoi partition “rule.” The interfacel’;; is then the set of points for which
two neighbors “claim” the same distance. Two simple ways
to do this are by adding an arbitrary constant to the square of
the distancesectional Voronoi partition[10,14,15) and by
multiplying the distance by a constanimultiplicative
Voronol partition[10,16,15,17).

Il. SPACE PARTITIONS

Given a set ofN pointlike sources{f;} in n space, the
Voronol partition or tessellationof space with respect to
{f;} is a classification of space intellsQ); defined such that
xe Q; if x is closer tof; than to any other sourdé.0],

Qi={xeRYd(x,i)<d(x,j), Vj#i}, (1)

where d(x,i) denotes the distance betwe&nand source B. Sectional Voronol partitions

f; ._This const.ryction is also known under Fhe names Wigner- A sectional Voronopartition (SVP) is defined 10,14,15
"4s ak-dimensional cut of a higher-dimensional Voronear-
tition. The source$P;} of the sectional partition are defined
as the projections of the original sourdég onto this lower-
edimensionalk space. Cell); associated to sourde; is the

two dimensions, the dual lattice of a Voronpartition is

called the Delaunay triangulation. C€l; can be seen as the
“region of influence” of f;, where the sources compete for
some spatially distributed resource. It is common to us

these constructions, and their generalizationsapgroxi-  Intersection of cell €; (associated tof;) with this
matemodels for cellular structures occurring in natit®—  k-dimensional hyperplane. For example, take soufégsin
13]. three dimensiongFig. 2), and construct a VP with three-
Two neighboring cells); and Q; are delimited by an dimensional cells(}; and plane interfaces’;. Now pro-
interfacel’;; of pointsx equidistant fromf; andf;, ject the sources;=(x;,y;,z) onto thez=0 plane(which

we call the II, plane to obtain the projected sources
Fij={xeRYd(x,i)=d(x,j)<d(x,k), Vk#i,j}. (2)  P;=(x,y;), which have associated "height; . Assign to
each sourcd; the intersectiorf); of ); with II,. This de-
These interfaces are (- 1)-dimensional hyperplanes normal fines the a sectional partition &f, with respect to sources
to f;f;. In two dimensiond}; are convex polygons and the {P;} with heightsz, . Cells(); are thus defined as
interfacesl’;; are straight linegFig. 1). Three interfaces . o o 5 o
Tii, Tjx, andl'y; meet at avertexv;;, , which is equidistant Qi={xell,/d*(x,i) +z7<d(x,j) +z, Vj#i}, (3
from f;, f;, andf,. This means that;;, is the center of a
circle throughf;, f;, andf,. Vertices of higher multiplicity
are possible for particular locations of the sources. For exwhered(x,i) is the distance, on th#l, plane, betweerP;
ample, a fourfold vertex would exist if four sources lay onand pointx.
the same circle. We will ignore the existence of these par- In the same way, interfacd$; are defined as
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Ty ={x eIl /d*(x,i)+Z*=d*(x,j)

+Z7<di(x,k)+z5, VK#i,j}. 4

Properties of these partitions in two dimensions are the fol-

lowing: (a) Interfaces are straight lines andenerically
meet at triple verticesin dimensiond, vertices have multi-
plicity d+1.) (b) Interfacel’;; is normal toP;P; , but not, in
general, equidistant fron; and P;. (c) The partition is
unchanged if alk; are changed according tzf— z*+ ¢? for

c an arbitrary real. An important difference from the

C. MOUKARZEL

Voronol partition is that in this case there may be sources to

which no cell is associated. This happen$)jfis not cut by
IT,. It is easy to see that SVP’s aeguivalentto Laguerre
partitions[14].

Appendix A discusses thescognition problemfor this
kind of partitions, that is, giving the sufficient conditions for

FIG. 3. A multiplicative Voronoipartition with respect to three
sources in two dimensions. The source with the largest intensity
a; (sourcef, in this figure has an unbounded cell. The other two

an arbitrary rectilinear partition to be a SVP. We will use sources are within their associated cells. Angles formed by the in-
similar concepts in Sec. Il in order to solve the recognitionterfaces at the vertices depend on the positions of the sources and

problem for sectional multiplicative Voronopartitions.

the values of the intensities. For certain value$af the interfaces

As an example of the application of sectional partitions,may not intersect. In this case the partition would be composed of

consider the case of sourcés, whose location in space

two disjoint circles each containing one of the sources, with smaller

changes in time, giving rise to a time-dependent partition ofntensities. The MVP with respect to three sources in three-

I1,. If, for example, sourcd,; moves away fronll,, the
two-dimensional cell(2; will shrink and finally disappear
when ), no longer cutdl,. Therefore the number of cells

can vary without changing the number of sources. Thus se

tional partitions can be used as dynamical models for cryst

growth[13], and other processes in which some cells disap--

pear or are created.

C. Multiplicative Voronol™ partition

The multiplicative Voronoipartition (MVP) [16,15,17 is
defined by assigning to each sourfiea positiveintensity
a;, and defining the multiplicative distance g(x,i)
=d(x,i)/a;. The cell(); associated to sourdg is then the
set of pointsx closer tof; (in terms of this multiplicative
distancé than to any other source

Qi:(XERn/ dx,i)_dox)

a; aj
Interfacesl’;; are hyperspherical surfacésrcle arcs in two
dimension$ satisfying

Fij:[XERn/

In two dimensions, the circular interface of a MVP with two
sources is one of the Apollonius circlésee for example
[18]) of those two points. In arbitrary dimensions tf be
the distance between two sourcels and f;, and
Ai;=a;/a; . Without loss of generality, we tak®; <1. This
means that; has the smallest intensity and thereférgwill

be the interior of a hypersphere, whilg will be its exterior.
The following properties are satisfied in any dimensi@):

fi is contained inQ;; (b) I';j has radiusR;;=A;;d;;/
(1—Ai2]~), and its centerC;; is on the straight line going

, Vj;ai]. (5)

d(x,i) B d(x,j) d(x,k)
a; B aj ay

, Vkii,j}.
(6)

dimensional space is a cluster of two spherical bublffeg. 4,
dashed lines

through f; and f;; and (c) C;; is located at a distance

ij /(1—Ai"}) from f;, that is, it never lays betweef and
Three sources give rise to a tessellation like the one
shown in Fig. 3. The exterior of the two “bubbles” is the
infinite cell associated to the source with the largest inten-
sity, f, in this example. For some choices{af} the inter-
faces will not intersect. In this case the tessellation is simply
a pair of circles, each containing one of the sources with
smaller intensities, while the exterior of these two circles is
the cell of the source with larger intensity. MVP’s can be
interpreted again as “areas of influence” of sourdéesbut
now each source has a different strength.

Consider a MVP of two-dimensional space with respect to
a set of source¢f;}. If three interfaced™;, I'j, and T’y
meet at a verteXagain, vertices of higher multiplicity are
only possible for particular configurations, which we ignore
here, then center<C;;, Cj,, and Cy; lay on a line. The
reason why this is so is simple. If two interfackg and
I'; have a common point;j, , then theircontinuationsmust
meet again at another poinf}k, the conjugate vertexBut
then the third interfacel’;, must also go through this
point since d(v*,i)/aj=d(v*,j)/a; and d(v*,j)/q
=d(v*,k)/a, implies d(v*,i)/a;=d(v*,k)/a,. Therefore
two points exist { andv*) at which all three circles inter-
sect. Then the centers of these circles must be on dHige
3).

Let us define aircular partition (CP) of two-dimensional
space to be a classification of space in cells delimited by
arbitrary circle arcs that meet at triple points called vertices.
No three centers of these arbitrarily defined interfaces will in
general be on a line. We will say that a vertex of a CP is
alignedif the centers of the three interfaces defining it are on
a line. As we saw, all vertices of a MVP are aligned in two
dimensiong2D). Therefore for each triple vertex of a MVP
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in 2D, the three sources and the three centers form the con- T
figuration [19] (6,,45) of projective geometry. Sinc€;;
cannot be betweeR; andP;, the three centers can only be
on one of the two external segments of the configuration.

In a three-dimensional MVP, four cells meet at each ver-
tex v, giving rise to six spherical interfaces;§, (ik),

(i), (jk), (j1), and Kl). The centers of these interfaces are
aligned in triplets so that the six centers also form the con-
figuration (6,,43), this time in three-dimensional space. This
has the implication that the six centers are necessarily on the
same plane.

The MVP was first introduced by Boof46] to describe
areas of influence in geography. Ash and Bolk&s] also
studied the recognition problem, that is, under which condi-
tions a CP is a MVP. The visual similarity between this kind
of partitions and two-dimensional foams is striking, and sug- . o . » )
gests the idea of finding a connection between them. Obvi- FIG. 4. A sectional mgltlpllcatlvg Voronopartition (SMVP? is
ously the centers of the films of a foam must be aligned foid€fined as a plane sectidblack circles of a three-dimensional
each triple vertex, if the foam is to be described as a Mvpmultlpllcatlve Voronol partition (dashed lings Shown is an ex-
since MVP’s are aligned. One find$7] that this alignment 27P'€ for three sources. Sourd@sof the SMVP(on thell, plane,
condition is indeed satisfied by all vertices of arbitraryW.hlte d.o 9 are the projections of sourcds of the MVP in three

o ) e dimensions(black dotg. The centersE; of the 3D MVP are
gﬂ#;gr)err?tteigﬂzmgnD?osrpltae t:f)lzmcf;(;s %ge;esl\j%rg Ez;nm aligned, which implies the alignment of the centé&g of the
dimensional MVP’s cannot describe all possible equilibrate 2%;’ tsoegirrré?:;gTjoirfhgog;ileto spherds]; thereforef;P; are
foams in two dimensions. This work shows the reason of this . '
limitation: In order to describe arbitrary equilibrated two-
dimensional foams we must introduce the sectional varianbIies the alignment of centerS;, Ci, and C;, which
of a multiplicative partition. In other words, instead of con- -~ "\ = 20 Lol T :cllig:';(ﬁentEQ-f kllé- and
fining the sources to the plane, we let them exist in a three: 1o =ik

dimensional space, and obtain the foanaawo-dimensional By In thre_e dimensiongFig. 4.) o S
cut of a three-dimensional M\/P We notice that the SMVP is equivalent to a multiplicative

Laguerre partition, since a SVP is equivalent to a Laguerre
. o L partition [14]. As is usual in sectional partitions, in the
D. Sectional multiplicative Voronoi partition SMVP there may be sourc with no associated cell, those
We will restrict the description to the case of a plane cutfor which the corresponding three-dimensional “bubble”
of a three-dimensional MVP. The generalization to a(); does not cufl,.
k-dimensional cut of am-dimensional MVP is straightfor- It was seen in Sec. Il C that the spherical interfﬁgein
ward. A plane cut, with a planH,, of a three-dimensional three dimensions is cut normally by the Segmf:_‘-_m}_ As a

MVP defines a SMVP ofl, (see Figs. 4 and)5The sources projective consequence of this, the straight line containing
P; of this SMVP are the normal projections oriib, of the

original sources;, and may be seen to have as attributes
both an intensitys; and a heightz; . Cells); associated to
sourcesP; are defined as

d(x,i)?+z d(x,j)?+z o
Q,={xell, > 2 . Yi#ip. (1)

In the same way, interfacdg; are circle arcs satisfying
dA(x,i)+zf  d¥(x,j)+Z d¥(x.k)+z
F” =41 Xe HZ a2 = 2

2
i a; ay

qu&i,j}. 8

An example of a SMVP with three sources is shown in Figs.
4 and 5. We see that there are two verticedbnat which
the three interfaces meet. In a general déseexample, in a
partition with respect to many sources like in Fig, i ver- FIG. 5. An upper view of the SMVP with respect to three
tex vjj exists, then the continuations of interfacE§,  sources defined in Fig. 4. Note that sourBgsare not all contained
[j, andT’y; also meet at atonjugatevertex:;i’}k. This im-  in their cellQ);, as happens in the case of the M{fHg. 4).
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FIG. 6. A SMVP of the plane with six sources. The projections I P
P; of the sources are indicated as small dots in the figure. For each ¢ £ }
one of the vertices in this partition, the three interfaces can be / 3
continued and they will meet each other again ebajugatevertex.

P; andP; on I, is normal to the circular interfacE;; . In
other words,P;, P;, andC;; are on the same line. Further-
more, and sinc&;; never lays betweef; andf; in 3D, we

notice thatC;; is always outside the segmeRtP; .

I1l. WHEN A CIRCULAR PARTITION IS A SMVP FIG. 7. All these four circular vertices admit a reciprocal figure.
Two of the vertices(a) and(c), are convex, and therefore a recip-
In this section the sufficient conditions for a CP to be arocal figure satisfying orientation is possible. The other two are not
SMVP are given. We first introduce the notion of orientedconvex, so that no reciprocal figure can satisfy orientation on them.
reciprocal figure for CP’s, and then proceed to demonstrate
that an aligned CP admitting such a reciprocal figure is a

B. Finding the sources of a SMVP
SMVP.

Given a circular partiton? of a region of two-
dimensional space, all of whoskiple) vertices are aligned,
we show here that, iP admits a reciprocal figure that satis-

We will now generalize the concept of reciprocal figure asfies orientation, ther? is a SMVP with respect to sources
appropriate for circular partitions. We say that a gradph f; located somewhere above poifits. Our demonstration is
made of points; connected by edgesj( forms a recipro- constructive, that is, we explicitly show how the sources and
cal figure for a CPP if (i) points P; are in correspondence intensities are determined. For this purpose we will use the
with the cellsQ; of P; (ii) edges (j) are in correspondence inversion transformationfAppendix B to straighten each
with the interfaced’;; of P; or (iii) for eachl’;; in P, points  vertex in turn, that is, transform a circular vertex into a rec-
Pi, Pj, andC;j; lay on the same line. Consider two regions tilinear one. This rectilinear vertex is one of a SVP. Sources
Q; and(); separated by a circular interfat . A reciprocal — are located in thistraight representatioAppendix A, and
figure R will be said to respeabrientationif for eachI';; in  then transformed back to the original system. The intensities
P, (i) Cj; is not betweerP; and P;; and (ii) starting from & of the corresponding SMVP are obtained in this back-
Ci; and traveling alongC;;P;P; to infinity, points P; and transformation, sing:e the SMVP is invar_iantunder_inversion.
P; are found in the same order as regiddsand(}; . Let v be an aligned vertex on which three interfaces

We saw already that all SMVP’s are align@ll vertices  {I'12,1'23,1'32} meet, andP4,P,,P3} the three points of the
satisfy the alignment condition introduced in Sec. Jl On  reciprocal figure associated to the three bubbles sharing the
the other hand, it is clear that the sour€gof a SMVP form  Vertex, as in Fig. 8. The conjugate verteX is obtained as
a reciprocal figure that satisfies orientation. Therefor@,i  the intersection point of theontinuationsof the interfaces,

a SMVP then(i) it is aligned, andii) it admits an oriented Which happens at a unique point because of alignment. Let

A. Reciprocal figure of a circular partition

reciprocal figure furthermore\; be the straight line through* and P;. We
Figure 7 shows four possible partitions that share thestart by showing the following: - . _ .
same center€;,, C,3, andCs;. All four admit reciprocal Theorem 1. A monoparametric family of triplets of circles

figures. But only in case) and(c) do we see a reciprocal {®12, 23,31} €xists, which has the following properties:
figure that satisfies orientation can be constructed. Therefor® w1z, w»3 and wg; intercept each other on*. (b)
neither(b) nor (c) can be a SMVP. The reason for this is that w;; L I'j; . (c) The intersection point gbetweenw;; and wj
the orientation condition cannot be satisfied if any of thelays on\;.

vertices is notconvex A vertex isconvexif all the internal The nontrivial content of the theorem is the fact that the
angles formed by the interfaces are less thaConvexity of ~ three intersection point of these normal circles;; lay on
all vertices is clearly a necessary condition for a circularthe lines\;. For example take an arbitrary poigf on X\,
partition to be a SMVP. We are now ready to give theand draw a circlew;, throughq; andv*, and normal to
sufficientconditions for a circular partition to be a SMVP. I'1,. Let g, be the intersection ob;, with A,. Now draw a
We will show in Sec. lll B that if a circular partitio® is  circle wp3 throughqg, andv*, and normal td",3. Letqs be
aligned and admits a reciprocal figure that satisfies orientaits intersection withh;. Then the circlews; throughv*,
tion, then it is a SMVP. d., andqgs is normal tol" 3.
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FIG. 8. A vertexv with its reciprocal figureP,P,P3, showing
circles wjj . These circles are normal to the interfadeg, and
intersect each other at poingg on \; .

6871

just consider the centers of the four circles going through
three of these pointsWe will now identify it on Fig. 9 as
the figure formed bw*, q;, g5 , andqs. First we notice
that circlesS]; and Sj, intercept each other at two points
v* and Pj’, both on\;. Therefore lined L, are normal to
\j, and we have identified the first three lines of the recip-
rocal figure. The other three lines; =g/ q; of the reciprocal
figure have to be normal to the segments;;, so they
are normal to the interfacel;; . Since the inversion pre-
serves angles, this means tlhgfl I';; in the original system
(Fig. 8.

We see that the existence of triplets of circles
{w1y,w03,w31} With the above-mentioned properties is a
consequence of the existence, in the straight representation,
of a figure v*qg;q;q;5, which is the reciprocal of
vLqsloglai. In other words, theorem 1 means that in the
straight representation, triangtgq;q; forms a reciprocal
figure for the rectilinear vertex. Clearly this reciprocal figure
010594 satisfies orientation if the original figure,P,P3
satisfies orientation in the circular system. Therefore as dis-

Proof. The demonstration is done by first performing ancussed in Appendix A, it is always possible to find three
inversion with centev™ and arbitrary radius, whereupon the sources/, i=1, 2, and 3, located at heights above points

interfacesl’;; are transformed into straight Iin<¥§j meeting

g; , such that this rectilinear vertex is a SVP with respect to

atv’ (Fig. 9. This transformed system will be referred to asthem. Once these sourcEsare known in the straight repre-
the “straight” representation of that vertex. Primed namessentation, a second inversion around the same pdiriakes
are used in the straight representation, with the exception qis back to the original system, and provides the original

v*, whose original location is kept in Fig. 9t itself is

mapped tox by the inversion Lines originally not going
throughv™* are transformed into circles throughi, as is the
case of{S;,,5,3,S31}, which form the reciprocal figure in

the original system. Circles;; are transformed into straight

lines wj; going throughg andq;, respectively, on\; and
\;, which are invariant.

locationsf; of the sources.

If vq,3is the first vertex to be considered in the system,
we have one degree of freedom in the determination of the
circleswj; , or equivalently of pointg); . Once in the straight
representation, there is one more degree of freedom: the de-
termination ofoneof the heights/. We will now show that,
if this z{ is chosen appropriately, the three back-transformed

The inversion transformation preserves angles, thereforgyyrcesf; are located above their respective poiRis

circle S is normal to the now straight interfade; . This
means that its center;; must lay onl“i’j . Consider the figure
formed byv’, Lq,, Loz, andLs;, and the six lines joining

Consider a plandl; that is normal toll, and contains
\i, as shown in Fig. 10. Draw a circlg; throughq; and
v*, and normal toll,. Let u; be the intersection of this

them. Maxwell[20] showed that a figure made of four points circle with the normaky; to IT,, throughP;. Now under an

joined by six linesalwayshas a reciprocal figur@o see this,

FIG. 9. Same as Fig. 8, after an inversion aroutid All circles

originally throughv* are now straight lines. This is the case of
and therefore we call this the “straight” represen-

interfacesl’; ,
tation of the vertex.

inversion with centep*, pointu; is aboveq;, since circle

Bi is transformed in a straight lingg{, normal toII,.
Straight line ¢; normal toIl,, throughP; is now a circle
a] throughv* andu/, and normal toll,. Its intersection
with TI, determines the image/. Now we now that source
f/ is located somewhere g8 . The sources can be displaced
vertically (simultaneously according to what we see in Ap-
pendix A, but not independently. Fixing the heigtitof one

of them determines the other two uniquely. What we want to
demonstrate is that if one of the sourd¢<oincides with its
pointu;, then the other two also do. In order to do this, take,
for example, the spherd}, throughv*, f1, andf;, and
normal toIl,. In the straight representation, interfaE¢,

of the Voronolpartition, with respect to sources;
and f, is a plane, equidistant fronf; and f;, and
normal tof;f;. This means thal';, is normal toX’,. As a
consequence, the intersectiaiy, (a circlg) of X;, with I1, is
normal to the intersectiol';, (a straight ling of I';, with
IT;. Now assume that;=u;. This means thaP; e A1y,
sincea; is in this case contained if;,. But then the circle
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FIG. 10. Shown is a plane normal b, and containing\; . This
figure shows how the heighg; of sourcef;=u; in the original
system is determined, given the positionsRyfand g;. Primed FIG. 11. The points; of the reciprocal figuréempty circles
variables correspond to positions after the inversion, that is, in there the projections, on they plane, of the source$; in three-
“straight” system. Sources; =u; are abovey;, and therefore the  gimensional space. The lin€P; must thus be normal to interfaces
back-transformed sourcés are aboveP; . I';; . Black dots indicate the location of the conjugate vertighs

for each vertexw;j in the figure.
Xy, is the circleS;, (Fig. 9 that goes througt®;, P5, and

v*, and is normal tol';,. This implies thatP, is also in The general procedure to determine the sources can now
Xy, which in turn impliesf;=u). The same reasoning can be described. Assume we are given a circular tessellation
be repeated for the pair of sources 1 and 3. which satisfies the required conditions of alignment and con-

We have thus shown that all sourcksare, in the back- VeXity, and that we are able to find, or are given, a reciprocal
transformed, 0rigina| system, located above the pcml]tef figure Pi for it. We start from one of the cells of the partition,
the reciprocal figure. In other words, we have shown that th@s in Fig. 11. Take an arbitrary vertex to start with, for ex-
given reciprocal figure is the projection of the souréesn ~ @mple, vertexvo;, and determine tentative locations for
theII, plane. point o on \y. This fixesq, andq,, as discussed in Sec.

Now we have to determine the heightsand intensities !l B. After fixing qg, the rest of the construction is uniquely
a;. The heightsz; of the sources can be found by back- determined. The locationgo, q;, andq, determinez,, z,,
transforming the sourcel§ from the straight system. How- @nd Z, and the corresponding intensitieg, a,, and a,,
ever in practice this is not necessary. By looking at Fig. 1¢hrough Egs(9) and(10). Now proceed to the neighboring

we notice that triangle* f;q; is a rectangle. Therefore, vertex vop3. Two of the sourcesf, and f, are already
known, only the height; of f5 has to be found. First one has
Z=|v*P|X|Pqil, (99  to find thenew locations ofq, and g, when defined from

_ _ _ vertexvg,,. In order to do this, lines "2 from vertexv,,
which suffices to locate the sourcgswith the sole knowl-  are drawn, and), andq, are located using the fact that the

edge of pointsP; andq; in the original system. Knowing hejghtsz, andz, are already known. Equatia®) implies
now the spatial locations of the sourcksin three dimen-

sions, the intensitieg; follow immediately, since the vertex * p
; s : 02 012, 10012 Pol
v* is equidistanf21] from the three sources. This means |PogX?| =|PoqX*?| 0% Py (119

U230

ai=Alp*fi|=A(Jv* P x|v*gi)2 (10
*
P

HereA is an arbitrary positive constant. Alternatively we can |P2q§°23)| =| qu(2012)| |v§<01—2)2|- (11b
obtain the same result by using the transformation properties |U<023)P2|
[Eqg. (B2)] of the a;’s, and the fact that the intensities are all
equal in the straight system. Once the newy, andq, are known, the next step is to draw

We have used the inversion transformation to demonstrat@ircles wgz and w3 through them and normal to the respec-
that the given vertex is a SMVP with respect to sourtes tive interfaces. Their intersection gives the locationgaf
located aboveP;, and showed how the sourcéscan be (this intersection always occurs ong™, as theorem 1
located without the need to perform an inversion for eactshows. This determineg; andas using Egs.(9) and (10).
vertex explicitly. All we need is to know the location of This procedure of triangulation is repeated until all sources
points g;, which we are free to choose for the first vertex are located. Eventually it may happen that a pagjns found
under consideration. This first choice determines all subseo be closer to the conjugate verteX than the correspond-
guentg; points, and therefore all sources. It is clear from Fig.ing P;. This is not acceptable, and means that térgative
10 that|v* g;| =|v* P;| has to be satisfied. Therefore one hasstarting position ofj, has to be changed. It must be shifted
to choose the triplet of circles;; such that this condition is away fromuvg,,, and the whole procedure repeated. It is easy
verified for the three pointg; . If one of theq;’s coincides to see that taking a large enough valueggfalways solves
with P;, this means that the corresponding heigihis zero,  this problem.

i.e., the sourcd; lays on thell, plane. A pointg; closer to One could ask whether this construction can be closed
v* than the correspondinB; is not acceptable. self-consistently. For example, after determiniiagirom f



55 GEOMETRICAL CONSEQUENCES OF FOAM EQUILIBRIUM 6873

There is still one more condition, which is related to pressure
equilibrium around the vertex. The pressure drop across an
interface can be written as

Api=2—=¢. (14

We will adopt the convention foAp to be positive if the
pressure decreases when crossing the interface in the coun-
terclockwise sense of rotation around This is of course
related to a convention for the signs of the In Fig. 12,
r, andAp, are negative according to this convention. Notice
that pressure jumps and radii have different signs when con-
FIG. 12. A generic vertex, at which three interfaceE,, I',,  Sidered from the two opposite vertices joined by a film. The
andI'; meet. We regard the pressure drops to be positive if thdact that the total accumulated pressure drop around a vertex
pressure decreases when the interface is crossed in the countéas to be zero then implies
clockwise sense of rotation around Therefore, in the case shown
in this figure,r, andr; are positive, whiler; is negative.

3
2, &=0. (15
and f, in our example of Fig. 11, one can go on with the

procedure as if; were unknown. Would the position ¢f  This is the pressure equilibrium condition for the vertex.
determined byf, andfs be the same one as found initially? Equations(13) and (15) are satisfied if the vertex is equili-
Alternatively, if we used y andf, to determinef 5 instead of  brated, and together are equivalent to

going around the bubble in the opposite sense, would its
position be the same as found after going around the bubble? - s . -

The answer is yes, because of unicity. As discussed in Ap- F +2 &(Ci—x)=o, (16)
pendix A, the height of one of the sources of a vertex deter-

mines the other two uniquely. This means that

. . wherex is anarbitrary point. This is what we will call the
f1,f,, ... f5 are all uniquely determined bfy,. y P

equilibrium condition for the vertex, and it encloses both
force and pressure equilibrium.
IV. EQUILIBRATED FOAMS

In this section we show that a two-dimensional foam in B. Equilibrium implies alignment

equilibrium satisfies all conditions required for it to be a  The alignment of the centers of a two-dimensional foam
SMVP. In order to do this, let us first write down the equi- was already shown a long time ago by Platg22]j for equal
librium conditions for an arbitrary vertex of the foam in surface tensions, and in the case of small self-standing clus-
compact form. We will consider the case of foams with ar-ters of two and three bubbles. For the case of a cluster of two
bitrary surface tensions, and also allow forces to act on théubbles and zero load, it is a trivial consequence of symme-
foam’s vertices. try [23]. The demonstration for the case of clusters of three
bubbles is referred to by Boys as being*“rather long and dif-
A. Equilibrium equations ficult” [22]. , ,

. It is not difficult to see that the alignment of the centers is

Let v be the location of a vertex at which three inter- in no way a property of clusters, and also not restricted to
facesl';, I',, andI'; meet, as shown in Fig. 12. Each inter- vertices with equal surface tensions and zero loads, but a
faceT; is a circle arc with radius; and centeiC;. It pro-  general consequence of equilibrium. We will find that, under
duces, onv, due to its surface tensiom, a force -r-i of Vvery general conditions, such as arbitrary surface tensions

. — L and external loads applied on the vertices, if a vertex is
modulus 2; in the direction of the tangent to the film at equilibrated then the centers of the three arcs converging to it

These forced; can therefore be written as lay on a line.
- Consider Eq(16), and assume for a moment that the ex-
T,=—2—Kf=—gK*, (12)  ternalload is zero. The@y, C,, andC; lay on the same line,

i as can be seen by taking=C,, for example. Thus all ver-

.. tices in equilibrium are aligned if no external force is applied
whereK;=C;—v and §=27/r;. The asterisk here stands on it. This alignment property is even true under nonzero
for a counterclockwise rotation in/2, so thate? zéy_ Let load conditions, if the force is perpendicular to the line of
us more generally assume that an external faicacts on  centers. A load satisfying such condition will be called a

v. Equilibrium of all forces acting on the vertex implies normal load The alignment condition has the geometrical
consequence that the interfacBs, when continued, meet

3 each other again at a unique poirit which we called the
E* +2 SiKiZG, i=123. (13) conjugate verte>E24] of v. This also means thqt the vertex
i=1 v could be physically realized as a self-standing cluster of
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aligned, and the load is normal to the line of centers, the
following condition is always satisfied by the coefficients:

~R,41+S,+T,=0. (18)
The equilibrium condition(16) now reads

—(€ar1FtRus 1)(Coi1—X0) + (£4+S)(Co—X,)

F(ET+T)(C  —x,)=0,a=1,...n, (19

and holds forarbitrary x,’s. The sign of¢,, is determined by
the sign convention at vertex,, therefore¢,,,; must ap-
pear with a minus sign in the equilibrium equation for vertex
«. Since we use a dependent bdsis. (17)] the coefficients
{Ra+1,S4 T4} (the “representation” of the loadare not

showing the naming convention for the interfaces. Note that filmunlquely determined for a given load. There is instead a

curvatures are of opposite signs when considered from each of tf@onoparametric family of coefficientsR,+1,S,, T4}, all
two vertices at their ends. Thus, for exampie, appears with a  Satisfying both Eqs(17) and(18), for each load~, . We will
+ sign in the equilibrium condition of vertex,, but with a— sign ~ US€ these_degrees of freedom to choose a representation

in that ofv, [see Eq(19)]. {Ra+1,§a ,'fa} that satisfies

FIG. 13. A bubble surrounded by neighborsa=1,...n

two bubbles(by continuing its interfacgsand is a kind of a Se=Ra,  a@=12,....n. (20)

“separability” condition for the static equilibrium condi- . _ . L

tions, in the sense that each vertex of a foam might as well bglotlc_e that this condition relates the coefficients of two_con-

that of an isolated cluster of two bubbles. Thus a vertex irsecutive loads. We now show that such a representation al-

equilibrium under a normal load is aligned, or, equivalently, Ways exists. We start by making the degree of freedom in the

a vertex in equilibrium under a normal load has a conjugatéePresentation of the loads explicit. For arbitrary, we add

vertex. the null vector(19) multiplied by v, to the load(17), and
Next we would like to consider the existence of a recip-0Ptain

rocal figure, since this is also a condition that has to be R - . _ .~ .

satisfied in order for a foam to be a SMVP. This condition Fr=-R,:1Cai1+S,Co+T,CO7 1, (21)

must be separately considered. The reader may easily build

examples of bubbles with neighbors, all of whose verti-  where

ces are aligned, but yet do not admit a reciprocal figure. The

reason is that the attempted reciprocal figure will not in gen- Ryt1=Rat1t Vo(Ros 1t €nv), (223

eral “close” around that bubble, the same case as described

in Appendix A. Se=S.t Va(R+£,), (22b)
C. Equilibrium implies reciprocal figure T =T+ (T +§a+1)_ (220

We will now show that if all vertices of a foam are equili-
brated, then an oriented reciprocal figure exists for it. WeCondition(20) then implies
start by considering a bubble, and show that the reciprocal

figure can be found for it. The figure for the whole foam can R,—Su+1 Rot&as1
then be formed by patching together those of neighboring Var1mg " re VeSS & . (23
bubbles. Consider a bubble wittm neighbors a=1,
2,...n, as shown in Fig. 13. At each vertex, of this  which has always a solution in the generic case.
bubble, three filmsl',,, T',;, and 2" meet. Interface Using this representation of the loads, we can rewrite the
I', separates the central bubble from its neighbipmwhile  equilibrium condition(19) as
interface T2** is the limit between neighborsy and
(a+1). We will assume vertices,, to be in equilibrium ~ Qs 1(Cpi1= X))+ Qu(C =X ) +E(C2T1—x,)=0,
under arbitrarynormal loads Ifa. We can generally write
these loads as a=1,...n, (24)
Fr=-Ru1Car1+S.Cot T.CE™ (17 where
Qe=¢at Ry, (253

That is, we have decomposed the external load of vertex
v, in thedependenbasis formed by the three centers of the il =
flms meeting at the vertex. Because these centers are Eo=8&, *Ta. (25b)
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(P,Cs,9), etc. When the figure is closed with the last point
P,, there is an extra condition, since it has to be the inter-
section of three lines: (P,C,), and P,-1C,_1n), and
(P1C1n). The construction of the reciprocal figure is thus an
overdeterminegroblem, and would not in general be pos-
sible if the centersC;; were arbitrarily located. Let us now
write the conditions for this reciprocal figure to close, in an
algebraic form. The point®; of the reciprocal figure are
determined by a set of coefficienf#,,B,} satisfying the
following conditions:

(P,—Pg)=A,(C,—Py), (289

(Pas1=Po)=B(CS =P,). (28b)
Substituting Eq(283 into Eq. (28b), we obtain

_Aa+1(Ca+1_ PO) +Aa(1_ Ba)(Ca_ PO)
FIG. 14. The same closed bubble of Fig. 13, showing the film . . .

centers C;; (empty dot$ aligned in triplets, and the sites + Ba(Cg“— Py)=0. (29
0,1,...,6(black dot$ of the reciprocal figure.

We will now show that the equilibrium conditior(24) en-
This amounts to hiding the loads in a redefinition of thesure that Eq(29) always has a solution, and therefore that a
surface tensions and pressurés—Q, . As we have shown, reciprocal figure exists. Comparison with E@4) lets us
this can always be done for aligned loads. We notice that theonclude that a solution will exist fdP, arbitrary, if we are

coefficientsk , satisfy able to find a set of coefficien{#\,,B,} that satisfy
" Qa+1 Qa Ea _ _
0;1 E,=0, (26) A A(1l-B) B, Me a=1,...n. (30

as can be verified by subtracting Eg4) with two different This is equivalent to

values ofx,, and adding up the result far=1, . .. n. Qui1=MaP ot (319
More generally the fact that all vertices of the bubble are
in equilibrium has the consequence that Q.=mAL(1-B,), (31b
n
> - 2 E,=u.B,- (319
> E (X% =0 27 g
a=1

It is not difficult to see that these equations are satisfied if

- . . . u, are related by
for X, arbitrary. Condition(27) can be generalized to any

closed path in the foam. The sum is in that case over all films Pos1=MatE,. (32
cut by the closed path. The smallest such path, enclosing a
vertex, gives the vertex equilibrium conditioh6). Now that  Starting from ararbitrary w4, this recursion relation gives us
we have written the bubble equilibrium condition in the con-the following values ofu. Once all are known, Eq.313
venient form(24), and we will write an algebraic condition provides the values of thé,, which in turn determine
for the existence of a reciprocal figure. {P4, ...,P,} using Eq.(283. The condition that the figure
The reciprocal figure was defined to be a set of pointzan be closed isP,,,=P,, and is equivalent to
{Po.P1, ... ,P,}, each associated to a bublglut not nec- u,,,=u,. This condition is satisfied because E@6)
essarily contained in )it such that the straight line passing holds, and therefore is a consequence of equilibrium.
through P; and P; is normal to the interfacd’;; between If we were given an arbitrary circular partition, it would
bubblesi andj. This means tha€;;, P;, andP; are on the not in general be possible to find a reciprocal figure for it.
same line, as in Fig. 14. We will require they andP, be  The fact that this CP is an equilibrated foam imposes geo-
arbitrary (with the only condition thaP,, P,, andC; are on  metrical constraints on it, ensuring, for example, that it ad-
a line).. This will allow us to patch together the reciprocal mits a reciprocal figure.
figures of neighboring bubbles to form that of the whole We have thus shown that, for an arbitrary equilibrated
foam. This is equivalent to the translation and dilatation debubble, it is always possible to find a reciprocal figure. We
grees of freedom existent in the definition of a reciprocalcan arbitrarily fixP, sincex, in Eg. (24) can be arbitrarily
figure for a SVP. For arbitrar?,, take P, anywhere on the chosen, and we can also choose the “scdle;P,| of the
line (PoC,). All other points are now uniquely determined. drawing at will, since the starting value,, that fixes this
P, is located in the intersection ofPGC,) and (P;C45);  scale, is arbitrary. Therefore the reciprocal figures of neigh-
next, P; is found as the intersection ofP{C;) and boring bubbles can be patched together to form a reciprocal
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figure for the whole foam. Each selection of a starting point 1 b
P, and a “scale” |PyP,| determines the other points

uniquely, therefore there are three degrees of freedom in th

determination of the reciprocal figure. OnBg and P, are

chosen, all other points are found as intersections of twi

lines passing through the cent&g and one already existing

point P; .

D. Orientation condition

Now we have to show that it is always possible to find,
among all possible reciprocal figures, at least one that sati
fies orientation as defined in Sec. 1l D. In the first place, if all
the surface tensions are positive, then all films will be unde.
traction, and therefore the vertices will be convex. If there
are nonconvex vertices in the foafvhich would happen if
some of the films are compressed instead of strejctiemh

FIG. 15. A three-dimensional multiplicative Vorongartition
gives rise to vertices which simultaneously belong to four neigh-

- ! . . iy boring bubbles in a generic situation. Six spherical interfaces con-
we know that it is not possible to safisfy orientatigg. 7). verge at these vertices. When one such veftehxite do) crosses

Positive surface tensions is thus a neces_sary condigbh the projection planél,, depending on its orientation this can result
for the foam to be a SMVP, although their modulus can beeither in(a) a T2 procesddisappearance of a triangular bubbte

arbitrary for each film. o . (b) a T1 process(neighbor switching for the two-dimensional
The orientation condition could fail in the first place be- jogm.

cause a centét;; lays in between two point8; andP; . Itis 3 o _ _ _
always possible to avoid this by choosiRg close enough to equilibrated foam isaligned and admits aroriented recip-

P,. In this way all following pointsP; are confined within a rocal figure This result is valid in general for heterogeneous
(arbitrarily chosepsmall region of space where no center is foams, each of whose films may have an arbitr@ysitive
located. This ensures that no cen@y lays betweerP; and Sl_Jrface tension, an_d even if Ioads_ are applied on the vertic_es,
P;. Now regarding the second part of the orientation condiith the sole requirement of equilibrium. We have seen in
tion (Sec. 11 D), consider a vertex,,3, which is convex and Sec. Ill B that any CP satisfying the conditions of alignment
aligned. Two orientations of the triangR,P,P; are pos- and existence of oriented reciprocal figure is a;sectlonal mul-
sible, as shown in Figs.(® and 7c). Note that both consti- tiplicative Voronol partition (SMVP). A SMVP is a plane
tute reciprocal figures for both vertices, but only one of themcut of a multiplicative partition, thus two-dimensional foams
satisfies orientation in each case. In our construction of tha@re plane cuts of three-dimensional foams, these last being a
reciprocal figure for the whole foam, we can decide the ori-multiplicative partition with respect to sources in three di-
entation of the initial triangle, choosing the one that respectg§ensions. Therefore, given an arbitrary equilibrated two-
orientation. The question is now if the correct orientation ofdimensional foam, it is always possible to find sourfg$

this starting triangle ensures that of all subsequent oned) three-dimensional space, and amplitudgsuch that the
whose locations are determined By and P;. To demon-  given foam is a SMVP with respect to those sources.

strate that this is indeed the case, we note that the triangle of A first implication of this correspondence is the identifi-
Fig. 7(a), if considered as a reciprocal figure for the vertex ofcation of a set of degrees of freedom for the foam: the
Fig. 7(c), has all three SegmenE_Pj wrongly oriented. The intensitiesa; and locations of the sourcégin three dimen-
point we want to make is that, if the vertex is convex, thereSions. This allows a more natural description of a foam, than
are only two possibilities: either all paifP; satisfy orien- the one that is done in terms of films and vertices. When a

tation, or all are wrongly oriented. Then if one of the pairs off0am is interpreted as a tessellation of space with respect to
a triangle forming part of a reciprocal figure is correctly ori- SOMe sources, we see that the foam's films and vertices are

ented, the other two must necessarily also be. This demors€condary constructions, and their evolution is a conse-
strates that if the starting pait,P; is chosen with the cor- duence of that_ of the sources. The dynamlcal d_escr|pt|on is
rect orientation, then all subsequent triangles must b&onceptually simpler using the SMVP interpretation. For ex-
correctly oriented, since they share at least a pair of sourcédnPle, the processes of neighbor switchifidl) and cell

with one preexisting triangle. Therefore in order to ensurediSappearanceT@) are described in a unified mann@ig.
correct orientation of the whole figure, it is enough to cor-19- Both are due to the fact that a fourfold vertex in 3D

rectly choose the orientation of the first pair. crosses the projection plarié,. Depending on the spatial
orientation of the vertex with respect Id,, this is seen as a
V. DISCUSSION T1 or T2 process.

An evolving foam can be seen as a particular instance of
A dissection of space into cells separated by circular in-a dynamical random lattice26], in which the evolution of a
terfaces that meet at triple vertices is called a circular partieellular structure is fixed by assigning a given dynamics to
tion (CP). A two-dimensional foam therefore defines a cir- the sources of a mathematically defined tessellation. In the
cular partition of two-dimensional space. The equilibrium case of foams the dynamics is usually fixed by gas diffusion
conditions for the foam impose geometrical constraints oracross the membranes. Alternatively, other dynamical evolu-
this CP. We have shown here that the CP defined by ation rules may also be interesting, but in any case one has to
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make the translation to obtain the source’s dynamics. The
next step is then to find, for a given proposed dynamic evo-
lution for the foam, the corresponding dynamjég] for the
sources and intensities.

Foams are usually studied inside a bounded region ol
cage, which imposes the only constraint that the films be
normal to its boundary. Boundaries of this kind do not affect
the fact that the foam is a SMVP. We have shown that the
result holds with the sole requirement of vertex equilibrium.
It is obvious that SMVP’s are always closed on themselves,
forming a self-standing cluster, that is, there are no open film
ends. This implies that even bounded foamsstbe a region
of a larger self-standing cluster of bubbles that is closed on
itself, and everywhere equilibrated. The point is not trivial in
that it ensures that all films ending at the boundary can be

continued, eventually formingphantom vertices, and that FIG. 16. An arbitrary rectilinear partition will not in general

the resulting foam will have all its Vert'ces,m equilibrium. admit a reciprocal figure. The one in this example does not admit a
We see then that there is no fundamental difference betwe&@ginrocal figure, and therefore cannot be a sectional Vérgaos

bounded and self-standing foams, since all foams are regiongion.

of a self-standing cluster. This does not mean that the bound-

aries have no effect, which would of course be false. If theGiven a rectilinear partitior® of the plane, aeciprocal fig-
foam’s dynamic inside the cage is, for example, produced byire R(P) is a planar graph composed of sitegoined by
gas diffusion across the films, the evolution of the “phan-edges {j) satisfying[20,15 the conditions thata) sitesi of
tom” bubbles existing as continuations of the physical foamR are in one-to-one correspondence with cé€lisof P, (b)
outside the cage, withotfollow this dynamic, but a different edges {j) of R are in one-to-one correspondence with in-
one, which is determined by the constraint that the films errfacesFij of P, and (c) edges {j) of R are normal to
normal to the cage’s boundaries. interfacesl’;; of P.

In the field of joint-bar structures, an old result due to  Clearly a reciprocal figure is defined up to arbitrary global
Maxwell [20,2§ states that if a lattice accepts a reciprocaldilatations and translations, since angles are not changed by
figure then it can support a self-stress, and conversely. Morghem. Therefore, ifP admits a reciprocal figure, there are
recently Ash and Bolkef15] showed that the existence of a three degrees of freedom in its determinati@®,15. An
reciprocal figure"is sufficient condition for the lattice to be aarbitrary partition” will not in general admit a reciprocal
sectional Voronolpartition. In this case there is the addi- figure. We can see this with a simple example. Draw an
tional requirement that all vertices are convex, therefore a'brbitrary polygonal cell}, with n faces, and take arbitrary,
stresses in the lattice must be of the same sign, and the latti¢gctilinear interfaces between ilsneighbors(Fig. 16). Now
can be an equilibrated spider web. A chain of results thafake an arbitrary poink, on the plane to start with, and
span a century allow us to see equilibrated spider webs agssign it to the central cell. This starting point is arbitrary,
SVP’s, and conversely. The alert reader may have noticedince a reciprocal figure is defined up to arbitrary transla-
that equilibrated foams can be seen as a kind of “generalions. The othen points{x,, ... X,} associated to the ex-
ized” spider webs, in which the pressure difference betweeRerng| cells must be somewhere on theaysr; stemming
cells is the new ingredient, and is equilibrated by the curvasgrom x,, and normal to the facdy; of Q. The global length
ture of the interfaces. It therefore turns out to be no surprisgcgje is also arbitrary, so that, sagx; can be freely chosen.
that these generalized spider websams are equivalent to  Then we choose,; somewhere ofm,. Now pointx, is de-
an appropriate generalization of SVP’s, namely, SMVP’Stermined as the intersection of raywith the normal to face
which include a multiplicative constant that gives rise 10T, going throughx,. This can be repeated to obtain all

curved interfaces. external points, but in general the figure will ndbse that
is, segmenk,x; will not be normal to interfacé’,,, whose
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is a SVP. This result solves the recognition problem for
A classification of space into cell3; separated by recti- SVP’s. The orientation condition can only be satisfied if all

linear interfaced’;; is called arectilinear partition of space. vertices of P are convex We will say that a vertex is

APPENDIX A: RECOGNITION PROBLEM
FOR RECTILINEAR PARTITIONS



6878 C. MOUKARZEL 55

FIG. 17. Both these partitions with three cells admit a reciprocal
figure. The one on the left does not satisfy orientation and therefore
cannot be part of a sectional Voronpartition. The one on the right
satisfies orientation, and therefore it is a SVP. It is then possible to
find sourcesf,, f,, andf; in three-dimensional space, such that  FIG. 19. Given an oriented reciprocal figu#®,,P,,P3}
this partition is obtained as the cat=0 of a three-dimensional (white dot3 for a rectilinear partition(interfacesl';;), the sources
Voronol partition with respect t¢f;}. Sources; will be located at  f; in three-dimensional space can be located above the pjnts
heightsz; above pointq1,2,3} in this figure. These sources must be equidistant from the vertex, therefore they

are at the intersection®lack dot$ of a spherical surface centered

convex if the internal angles formed by the interfaces are alfit the vertex o3 with the normals through; .

smaller thansr. Flgl_Jre 17 shows two partitions with three &vith centerv i, and containingf; and f; . Both will be si-
cells. One of them is convex, the other is not. In the secon . . ! :
nultaneously contained, since interfacg, on whichuvjy,

case it is not possible to find a reciprocal figure that satisfies . -~ .
orientation, and therefore it cannot be a SVP. is located, is equidistant frorfy and f;. The radiusr;,, of

Given a rectilinear partitiorP*, and an oriented recipro- thr'ls. ﬁwface IS dfe_:te:jmblnedl bY the quanon_shfq);and fJ'.’ |
cal figure for it(as in Fig. 18, it is always possibl¢15] to W 'Ch n tL;]m are fixed byo. lts ;ntﬁrsec::on' W'It t fevertlca
find sourced{f;} in three dimensions, located at heiglzs N throug P dgtermlneém. If this spherical surface does
above the point®, , such thatP* is the section witHl, of not intersech,,, just choose a larger value of and start all

a three-dimensional VP with respect ). The procedure over again(from the initial vertex. The construction pro-

. . ; : . ceeds in this manner until all sources have been determined.
to determine the heightg can be easily described. Vertices ) L . o
. - As mentioned above, the initial value Kof is tentative, in the
vijx of P* will be equidistant from sourcef, f;, andfy

(see Fig. 19 Start from an arbitrary vertex, say;, , and sense that it may have to be modifigdcreasedif, at some
draw ag's herical surface (Efrbitrary radius’r--ag';k ’with point during the procedure, a normal line is not cut by the

P Irary ijk—"0 corresponding spherical surface from the vertex. It is easy to
center at that vertex. Now define sourdgs f;, andf, as

) . . . / see that increasing the value of the starting radyss al-
the intersections of this surface with the verticalermals to . .
I1,) through P;, P;, and Py, respectively. Next go to a ways enough to solve this problem. There is thus one degree

. - . . . of freedom in this constructiorr §). We conclude that, given
neighboring vertex, which shares two sources with this one ) 9

Let us call itu ;. For this vertex, only sourcéy has to be a two-dimensional partitio® that admits a reciprocal figure,

located. sincd. andf: are known. Draw a spherical surface there is a four-parametric family of source locations such
' ! ] ' P thatP is a SVP with respect to them. Three degrees of free-

dom come from the determination of the reciprocal figure
itself (since a dilatation and/or translation of a reciprocal
figure is again a reciprocal figurand the last one from,,.
This last degree of freedom results from the fact that a SVP
is invariant if all heights are changed according to
Zi2*>Zi2+ a? with « arbitrary[see Eqs(3) and (4)].

Reciprocal figures were first studied by Maxwig2D,2§
in relation to the rigidity of bar-joint frameworks in the
plane. Maxwell pointed out that frameworks that have a re-
ciprocal figure are able to support a self-stress, and con-
versely. The reason is that the edges of the reciprocal figure
can be taken to represent forces transmitted by the edges of
the original framework(rotated bys/2). Since these edges
form closed polygons, the existence of a reciprocal figure
implies the existence of an equilibrated set of internal

FIG. 18. A convex rectilinear partitiofthick lines with cells ~ Stresses in the absence of an external load. The addition of
{A,B, ... |} and its associated reciprocal figuithin lines with ~ the orientation conditiofa condition not required by Max-
sites{a,b, ... i} (black dot3. This reciprocal figuréor any other ~ Well's definition of a reciprocal figujehas the statical con-
figure obtained from dilatation and translation of this psatisfies ~ sequence that all signs of the stresses are equal, for example
orientation, and therefore the partition is a sectional Vorguaoti-  all traction or all compression. It is clear that no equilibrium
tion. Sources of this SVP are located above poRts is possible in the case of Fig. @& if all three stresses are to
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have the same sign. Figure (by, on the other hand, can be Using this result, we can easily see that the inversion is a
in equilibrium under compression or traction on all three“symmetry” of a MVP in any dimension if the intensities
interfaces. The conclusion is that every SVP is an equilibare also appropriately transform¢dl5]. More precisely, a
rium configuration for a spider wefl5], and conversely, MVP of R" with respect to source$P;} with intensities
each such equilibrium configuration is a SVP. The existencga;} is transformed by an inversion into a MVP with respect
of a reciprocal figure has also projective consequencesp {P;} with intensities{a;}, where the intensities satisfy
which have been studied by Crafg] and Whiteley{30]. a

al=—A,. (B3)

APPENDIX B: INVERSION TRANSFORMATION ri

Here we briefly describe a geometric transformationHereAo is an arbitrary prefactor, the same for ajls, and
calledinversion[18]. We will find it extremely useful for our T is the distance between sourcand the inversion center
purpose of discussing circular partitions. An inversion with©O- To see this, it suffices to demonstrate that T';; then
radiusk around a poin© located atr, transforms a point after an inversionx’ e I';, which is easily done using Egs.
P located af0+F into a pointP’ at FO+F’ satisfying (6), (B2), and(B3). The inversion transformatlon is of course

also a symmetry of the SMVISec. Il D), if the inversion
. K2 centerO is on the cutting planél,, since in this case the
r'=—r, (B1) inversion leaves this plane invariant.
' If the inversion centelO happens to be located on an
interfaceI’;; of a MVP (initially a spherical surfade the

wherer =|r|. The sphere of radiuk and centered a is ¢ L interfacE! | i h o. Th
invariant under this transformation, while the inside and outranNsformed interface; is a plane not througlv. The re-

side of this sphere are interchanged. Obviously this transfor3ulting interface thus corresponds to a Voromartition

mation is self-inverse. Let us now describe some of the prop/ith respect to sourcasandj in their new locations. There-

erties of this transformation in two dimensidiis]. Most of  fore the transformed intensitieg anda; have to be equal

them apply trivially in higher dimensions. after the inversion, which is verified using E®3),
(i) Circles not throughO are transformed in circles not a  a

throughO. Oel=—=—"=a/=a/. (B4)
(i) Circles throughO are transformed into straight lines fio T

not throughO. In the same way a SMVP with respect to two sourcesid

_(iii) Straight lines not throughD are transformed in | is transformed into a SVP D eTj; . The intensities; are

circles throughO. transformed according to EGB3), wherer; is the distance

(iv) Straight lines througl®© are invariant. betweenO and sourcef; in three-dimensional space. The

(v) Angles are preserve@ modulug by the inversion.  way in which heights; transform is easily found using Eq.
Given two pointsP; and P, at distances; andr, from  (B1). Notice that if the inversion center coincides with the
the inversion center, the distancg, between them trans- |ocation of a conjugate vertex*, then the transformed par-
forms as tition has a rectilinear vertex, since three interfaces are si-
2 multaneously transformed into straight lines. We will use
(B2) this property of the inversion transformation when solving

d12=d12—. it o
rirs the recognition problem for SMVP’s in Sec. Il B.
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