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Geometrical consequences of foam equilibrium

C. Moukarzel*
Höchstleistungsrechenzentrum, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 6 January 1997!

Equilibrium conditions impose nontrivial geometrical constraints on the configurations that a two-
dimensional foam can attain. In the first place, the three centers of the films that converge to a vertex have to
be on a line, i.e., all vertices arealigned. Moreover, an equilibrated foam must admit areciprocal figure. This
means that it must be possible to find a set of pointsPi on the plane, one per bubble, such that the segments
PiPj are normal to the corresponding foam films. It is furthermore shown that these constraints are equivalent
to the requirement that the foam be a sectional multiplicative Voronoı¨ partition ~SMVP!. A SMVP is a cut
with a two-dimensional plane of a three-dimensional multiplicative Voronoı¨ partition. Thus, given an arbi-
trary equilibrated foam, we can always find pointlike sources~one per bubble! in three dimensions that
reproduce this foam as a generalized Voronoı¨ partition. These sources are the only degrees of freedom that we
need in oder to describe the foam fully.@S1063-651X~97!14405-1#

PACS number~s!: 82.70.Rr, 02.40.Sf, 02.40.Dr
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I. INTRODUCTION

Cellular structures@1–4# appear in a wide range of natur
phenomena, and have puzzled and fascinated scientist
decades@5#. They can be generally described as packings
space-filling cells of roughly polygonal shape, separated
thin interfaces to which a surface energy is associated. T
arise as a consequence of competition between domains
der the constraint of space filling, and there is often so
mechanism, such as the migration of a conserved qua
across the interface, which makes them evolve in time,
coarsen. Foams such as those obtained by shaking s
water are the examples of cellular structures closest to
everyday experience. Two-dimensional foams may be
tained by confining a soap froth between two closely spa
glass plates. In spite of their apparent simplicity, foams d
play much of the phenomenology appearing in coarsen
cellular structures. Foams have been the subject of inte
since their relevance in the problem of grain growth w
pointed out by Smith@6#. Despite the attention they hav
received, the understanding of their dynamical proper
proved to be a tricky problem. Even some of the most ba
issues, such as their asymptotic scaling properties, has be
matter of debate until recently~see references above!. Nu-
merically exact simulation procedures@7#, as well as analyti-
cal @8# and numerical@9# approximations, have been usef
in understanding the dynamics of ideal foams, but the sys
sizes accessible to available simulation procedures
strongly limited~for a complete account, see Refs.@3,4#!.

A satisfactory theoretical framework for the description
foams has not yet been achieved. The main result of
work consists in establishing arigorous connectionbetween
foams and Voronoı¨ partitions~VP’s!. This connection pro-
vides a set of fundamental degrees of freedom for the fo
~the source’s locations in space!, and therefore constitutes
step toward the above-mentioned theoretical understand

*Permanent address: IF-UFF, CEP 24210-340, Niteroi RJ, Br
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On the other hand, an efficient method for the numeri
simulation of ideal foams would also be highly desirab
and we propose that such a method could be obtained
exploiting the equivalence between foams and VP’s repo
in this work. More precisely, we establish the followingcor-
respondencebetween equilibrated two-dimensional foam
~EF’s! and a generalization of VP’s, the sectional multiplic
tive Voronoı̈ partition ~SMVP!: Given an arbitrary EF, it is
always possible to find sources in space such that a SM
with respect to them exactly gives this foam.

In Sec. II the VP and its generalizations are reviewed. T
simplest generalizations of the VP concept are the sectio
Voronoı̈ partition and the multiplicative Voronoı¨ partition.
These correspond to adding a constant to the~square! dis-
tance, and to multiplying it by a constant, respectively.
the end of this section a combination of both is introduc
the sectional multiplicative Voronoı¨ partition. We will use
this partition in order to describe foams.

The demonstration of the above-mentioned corresp
dence between foams and SMVP’s is divided in two pa
~Secs. III and IV! for clarity. In Sec. III, therecognition
problem for SMVP’s is solved. The recognition problem
consists in giving the sufficient geometrical conditions tha
circular partition has to satisfy in order to be a SMVP. W
will see that if a circular partition has all of its vertice
alignedand admits anoriented reciprocal figure, then it is a
SMVP. In other words, it is always possible to find sourc
in three-dimensional space that give this circular partition
a SMVP. In this section we also describe the procedure
find the sources when these conditions are met. Some m
rial that is needed in this section is described in the App
dixes.

Section IV deals with the equilibrium conditions fo
foams and its geometrical consequences. We start by wri
the force and pressure equilibrium conditions in comp
form in Sec. IV A. In Secs. IV B and IV C, it is shown tha
an equilibrated foam has all of its verticesalignedand ad-
mits anoriented reciprocal figure, respectively. Therefore al
equilibrated foams satisfy the conditions required in Sec.il.
6866 © 1997 The American Physical Society
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ject the sourcesf i5(xi ,yi ,zi) onto thez50 plane~which
we call the Pz plane! to obtain the projected sources
Pi5(xi ,yi), which have associated ‘‘heights’’zi . Assign to
each sourcePi the intersectionV i of Ṽi with Pz . This de-
fines the a sectional partition ofPz with respect to sources
$Pi% with heightszi . CellsV i are thus defined as

V i5$xPPz /d
2~x,i !1zi

2,d2~x, j !1zj
2, ; jÞ i %, ~3!

whered(x,i ) is the distance, on thePz plane, betweenPi
and pointx.

In the same way, interfacesG i j are defined as
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and can be described as SMVP’s. Finally in Sec. V the
plications of this result are discussed, and some perspec
for future work are advanced.

II. SPACE PARTITIONS

A. Voronoı̈ partition

Given a set ofN pointlike sources$ f i% in n space, the
Voronoı̈ partition or tessellationof space with respect to
$ f i% is a classification of space intocellsV i defined such tha
xPV i if x is closer tof i than to any other source@10#,

V i5$xPRn/d~x,i !,d~x, j !, ; jÞ i %, ~1!

where d(x,i ) denotes the distance betweenx and source
f i . This construction is also known under the names Wign
Seitz cells, Dirichlet tessellations, and Thiessen polygons
two dimensions, the dual lattice of a Voronoı¨ partition is
called the Delaunay triangulation. CellV i can be seen as th
‘‘region of influence’’ of f i , where the sources compete f
some spatially distributed resource. It is common to u
these constructions, and their generalizations, asapproxi-
matemodels for cellular structures occurring in nature@10–
13#.

Two neighboring cellsV i and V j are delimited by an
interfaceG i j of pointsx equidistant fromf i and f j ,

G i j5$xPRn/d~x,i !5d~x, j !,d~x,k!, ;kÞ i , j %. ~2!

These interfaces are (n21)-dimensional hyperplanes norm
to f i f j . In two dimensionsV i are convex polygons and th
interfacesG i j are straight lines~Fig. 1!. Three interfaces
G i j , G jk , andGki meet at avertexv i jk , which is equidistant
from f i , f j , and f k . This means thatv i jk is the center of a
circle throughf i , f j , and f k . Vertices of higher multiplicity
are possible for particular locations of the sources. For
ample, a fourfold vertex would exist if four sources lay o
the same circle. We will ignore the existence of these p

FIG. 1. Shown is a Voronoı¨ partition of two-dimensional spac
with respect to pointlike sources$ f i% ~black dots!. Each sourcef i
has an associated cellV i , which is the subset of space that is clos
to f i than to any other source. InterfacesG i j ~thick lines! are equi-
distant from the sources whose cells they delimit. Three interfa
G i j , G jk , and Gki meet at a vertexv i jk , which is therefore the
center of a circle~dashed! through the three corresponding source
-
es

r-
In

e

ticular configurations, that is, we will assumegenericsource
locations. Under this assumption, all vertices are of mu
plicity three.

The concept defining Voronoı¨ partitions isequidistance.
A simple way to generalize them is to change the way
which distances to the sources are measured. One lets
source measure the distance to pointsx according to its own
‘‘rule.’’ The interfaceG i j is then the set of pointsx for which
two neighbors ‘‘claim’’ the same distance. Two simple wa
to do this are by adding an arbitrary constant to the squar
the distance~sectional Voronoı¨ partition @10,14,15#! and by
multiplying the distance by a constant~multiplicative
Voronoı̈ partition @10,16,15,17#!.

B. Sectional Voronoı̈ partitions

A sectional Voronoı¨ partition ~SVP! is defined@10,14,15#
as ak-dimensional cut of a higher-dimensional Voronoı¨ par-
tition. The sources$Pi% of the sectional partition are define
as the projections of the original sources$ f i% onto this lower-
dimensionalk space. CellV i associated to sourcePi is the
intersection of cell Ṽi ~associated to f i) with this
k-dimensional hyperplane. For example, take sources$ f i% in
three dimensions~Fig. 2!, and construct a VP with three
dimensional cellsV i and plane interfacesG̃i j . Now pro-

s

.

FIG. 2. A sectional Voronoı¨ partition ~SVP! of the plane is
defined by intersecting a three-dimensional Voronoı¨ partition with
that plane. SourcesPi of this SVP~black dots! are the projections
of the three-dimensional sourcesf i ~white dots! onto the plane.
InterfacesG i j between cells are rectilinear, normal toPiPj , and
meet at triple verticesv i jk , but arenotequidistant from the sources
Sources with a too large value ofzi ~for exampleP10 in this figure!
do not have an associated cell.
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G i j5$xPPz /d
2~x,i !1zi

25d2~x, j !

1zj
2,d2~x,k!1zk

2 , ;kÞ i , j %. ~4!

Properties of these partitions in two dimensions are the
lowing: ~a! Interfaces are straight lines and~generically!
meet at triple vertices.~In dimensiond, vertices have multi-
plicity d11.) ~b! InterfaceG i j is normal toPiPj , but not, in
general, equidistant fromPi and Pj . ~c! The partition is
unchanged if allzi are changed according to:zi

2→zi
21c2 for

c an arbitrary real. An important difference from th
Voronoı̈ partition is that in this case there may be sources
which no cell is associated. This happens ifṼi is not cut by
Pz . It is easy to see that SVP’s areequivalentto Laguerre
partitions@14#.

Appendix A discusses therecognition problemfor this
kind of partitions, that is, giving the sufficient conditions f
an arbitrary rectilinear partition to be a SVP. We will u
similar concepts in Sec. III in order to solve the recogniti
problem for sectional multiplicative Voronoı¨ partitions.

As an example of the application of sectional partition
consider the case of sourcesf i , whose location in space
changes in time, giving rise to a time-dependent partition
Pz . If, for example, sourcef 1 moves away fromPz , the
two-dimensional cellV1 will shrink and finally disappear
when Ṽ1 no longer cutsPz . Therefore the number of cell
can vary without changing the number of sources. Thus s
tional partitions can be used as dynamical models for cry
growth @13#, and other processes in which some cells dis
pear or are created.

C. Multiplicative Voronoı̈ partition

The multiplicative Voronoı¨ partition ~MVP! @16,15,17# is
defined by assigning to each sourcef i a positive intensity
ai , and defining themultiplicative distance dm(x,i )
5d(x,i )/ai . The cellV i associated to sourcef i is then the
set of pointsx closer to f i ~in terms of this multiplicative
distance! than to any other source

V i5H xPRnY d~x,i !

ai
,
d~x, j !

aj
, ; jÞ i J . ~5!

InterfacesG i j are hyperspherical surfaces~circle arcs in two
dimensions! satisfying

G i j5H xPRnY d~x,i !

ai
5
d~x, j !

aj
,
d~x,k!

ak
, ;kÞ i , j J .

~6!

In two dimensions, the circular interface of a MVP with tw
sources is one of the Apollonius circles~see for example
@18#! of those two points. In arbitrary dimensions letdi j be
the distance between two sourcesf i and f j , and
Ai j5aj /ai . Without loss of generality, we takeAi j,1. This
means thatf j has the smallest intensity and thereforeV j will
be the interior of a hypersphere, whileV i will be its exterior.
The following properties are satisfied in any dimension:~a!
f i is contained inV i ; ~b! G i j has radiusRi j5Ai j di j /
(12Ai j

2 ), and its centerCi j is on the straight line going
l-

o

,

f

c-
al
-

through f i and f j ; and ~c! Ci j is located at a distance
di j /(12Ai j

2 ) from f i , that is, it never lays betweenf i and
f j .
Three sources give rise to a tessellation like the o

shown in Fig. 3. The exterior of the two ‘‘bubbles’’ is th
infinite cell associated to the source with the largest int
sity, f 1 in this example. For some choices of$ai% the inter-
faces will not intersect. In this case the tessellation is sim
a pair of circles, each containing one of the sources w
smaller intensities, while the exterior of these two circles
the cell of the source with larger intensity. MVP’s can b
interpreted again as ‘‘areas of influence’’ of sourcesf i , but
now each source has a different strength.

Consider a MVP of two-dimensional space with respec
a set of sources$ f i%. If three interfacesG i j , G jk , andGki
meet at a vertex~again, vertices of higher multiplicity are
only possible for particular configurations, which we igno
here!, then centersCi j , Cjk , and Cki lay on a line. The
reason why this is so is simple. If two interfacesG i j and
G jk have a common pointv i jk , then theircontinuationsmust
meet again at another pointv i jk* , the conjugate vertex. But
then the third interfaceG ik must also go through this
point since d(v* ,i )/ai5d(v* , j )/aj and d(v* , j )/aj
5d(v* ,k)/ak implies d(v* ,i )/ai5d(v* ,k)/ak . Therefore
two points exist (v andv* ) at which all three circles inter-
sect. Then the centers of these circles must be on a line~Fig.
3!.

Let us define acircular partition ~CP! of two-dimensional
space to be a classification of space in cells delimited
arbitrary circle arcs that meet at triple points called vertic
No three centers of these arbitrarily defined interfaces wil
general be on a line. We will say that a vertex of a CP
alignedif the centers of the three interfaces defining it are
a line. As we saw, all vertices of a MVP are aligned in tw
dimensions~2D!. Therefore for each triple vertex of a MVP

FIG. 3. A multiplicative Voronoı¨ partition with respect to three
sources in two dimensions. The source with the largest inten
ai ~sourcef 1 in this figure! has an unbounded cell. The other tw
sources are within their associated cells. Angles formed by the
terfaces at the vertices depend on the positions of the sources
the values of the intensities. For certain values of$ai% the interfaces
may not intersect. In this case the partition would be compose
two disjoint circles each containing one of the sources, with sma
intensities. The MVP with respect to three sources in thr
dimensional space is a cluster of two spherical bubbles~Fig. 4,
dashed lines!.
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55 6869GEOMETRICAL CONSEQUENCES OF FOAM EQUILIBRIUM
in 2D, the three sources and the three centers form the
figuration @19# (62,43) of projective geometry. SinceCi j
cannot be betweenPi andPj , the three centers can only b
on one of the two external segments of the configuration

In a three-dimensional MVP, four cells meet at each v
tex v i jkl , giving rise to six spherical interfaces (i j ), (ik),
( i l ), ( jk), ( j l ), and (kl). The centers of these interfaces a
aligned in triplets so that the six centers also form the c
figuration (62,43), this time in three-dimensional space. Th
has the implication that the six centers are necessarily on
same plane.

The MVP was first introduced by Boots@16# to describe
areas of influence in geography. Ash and Bolker@15# also
studied the recognition problem, that is, under which con
tions a CP is a MVP. The visual similarity between this ki
of partitions and two-dimensional foams is striking, and su
gests the idea of finding a connection between them. O
ously the centers of the films of a foam must be aligned
each triple vertex, if the foam is to be described as a MV
since MVP’s are aligned. One finds@17# that this alignment
condition is indeed satisfied by all vertices of arbitra
equilibrated foams. Despite this~which is a necessary but no
sufficient condition for a foam to be a MVP!, two-
dimensional MVP’s cannot describe all possible equilibra
foams in two dimensions. This work shows the reason of
limitation: In order to describe arbitrary equilibrated tw
dimensional foams we must introduce the sectional var
of a multiplicative partition. In other words, instead of co
fining the sources to the plane, we let them exist in a thr
dimensional space, and obtain the foam asa two-dimensional
cut of a three-dimensional MVP.

D. Sectional multiplicative Voronoı̈ partition

We will restrict the description to the case of a plane
of a three-dimensional MVP. The generalization to
k-dimensional cut of ann-dimensional MVP is straightfor-
ward. A plane cut, with a planePx , of a three-dimensiona
MVP defines a SMVP ofPz ~see Figs. 4 and 5!. The sources
Pi of this SMVP are the normal projections ontoPz of the
original sourcesf i , and may be seen to have as attribu
both an intensityai and a heightzi . CellsV i associated to
sourcesPi are defined as

V i5H xPPzY d~x,i !21zi
2

ai
2 ,

d~x, j !21zj
2

aj
2 , ; jÞ i J . ~7!

In the same way, interfacesG i j are circle arcs satisfying

G i j5H xPPzY d2~x,i !1zi
2

ai
2 5

d2~x, j !1zj
2

aj
2 ,

d2~x,k!1zk
2

ak
2 ,

;kÞ i , j J . ~8!

An example of a SMVP with three sources is shown in Fi
4 and 5. We see that there are two vertices onPz at which
the three interfaces meet. In a general case~for example, in a
partition with respect to many sources like in Fig. 6!, if ver-
tex v i jk exists, then the continuations of interfacesG i j ,
G jk , andGki also meet at aconjugatevertexv i jk* . This im-
n-
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plies the alignment of centersCi j , Cjk , and Cki , which
could also be deduced from the alignment ofEi j , Ejk , and
Eki in three dimensions~Fig. 4! .

We notice that the SMVP is equivalent to a multiplicativ
Laguerre partition, since a SVP is equivalent to a Lague
partition @14#. As is usual in sectional partitions, in th
SMVP there may be sourcesPi with no associated cell, thos
for which the corresponding three-dimensional ‘‘bubble
Ṽi does not cutPz .

It was seen in Sec. II C that the spherical interfaceG̃i j in
three dimensions is cut normally by the segmentf i f j . As a
projective consequence of this, the straight line contain

FIG. 4. A sectional multiplicative Voronoı¨ partition ~SMVP! is
defined as a plane section~black circles! of a three-dimensiona
multiplicative Voronoı¨ partition ~dashed lines!. Shown is an ex-
ample for three sources. SourcesPi of the SMVP~on thePz plane,
white dots! are the projections of sourcesf i of the MVP in three
dimensions~black dots!. The centersEi j of the 3D MVP are
aligned, which implies the alignment of the centersCi j of the
SMVP. Segmentsf i f j are normal to spheresG̃i j ; thereforePiPj are
normal to circlesG i j on the plane.

FIG. 5. An upper view of the SMVP with respect to thre
sources defined in Fig. 4. Note that sourcesPi are not all contained
in their cellV i , as happens in the case of the MVP~Fig. 4!.
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6870 55C. MOUKARZEL
Pi andPj on Pz is normal to the circular interfaceG i j . In
other words,Pi , Pj , andCi j are on the same line. Furthe
more, and sinceEi j never lays betweenf i and f j in 3D, we

notice thatCi j is always outside the segmentPiPj .

III. WHEN A CIRCULAR PARTITION IS A SMVP

In this section the sufficient conditions for a CP to be
SMVP are given. We first introduce the notion of orient
reciprocal figure for CP’s, and then proceed to demonst
that an aligned CP admitting such a reciprocal figure i
SMVP.

A. Reciprocal figure of a circular partition

We will now generalize the concept of reciprocal figure
appropriate for circular partitions. We say that a graphR
made of pointsPi connected by edges (i j ) forms a recipro-
cal figure for a CPP if ~i! pointsPi are in correspondenc
with the cellsV i of P; ~ii ! edges (i j ) are in correspondenc
with the interfacesG i j of P; or ~iii ! for eachG i j in P, points
Pi , Pj , andCi j lay on the same line. Consider two regio
V i andV j separated by a circular interfaceG i j . A reciprocal
figureR will be said to respectorientation if for eachG i j in
P; ~i! Ci j is not betweenPi andPj ; and ~ii ! starting from
Ci j and traveling alongCi j PiPj to infinity, points Pi and
Pj are found in the same order as regionsV i andV j .

We saw already that all SMVP’s are aligned~all vertices
satisfy the alignment condition introduced in Sec. II C!. On
the other hand, it is clear that the sourcesPi of a SMVP form
a reciprocal figure that satisfies orientation. Therefore, ifP is
a SMVP then~i! it is aligned, and~ii ! it admits an oriented
reciprocal figure

Figure 7 shows four possible partitions that share
same centersC12, C23, andC31. All four admit reciprocal
figures. But only in cases~a! and ~c! do we see a reciproca
figure that satisfies orientation can be constructed. There
neither~b! nor ~c! can be a SMVP. The reason for this is th
the orientation condition cannot be satisfied if any of t
vertices is notconvex. A vertex isconvexif all the internal
angles formed by the interfaces are less thanp. Convexity of
all vertices is clearly a necessary condition for a circu
partition to be a SMVP. We are now ready to give t
sufficientconditions for a circular partition to be a SMVP
We will show in Sec. III B that if a circular partitionP is
aligned and admits a reciprocal figure that satisfies orie
tion, then it is a SMVP.

FIG. 6. A SMVP of the plane with six sources. The projectio
Pi of the sources are indicated as small dots in the figure. For e
one of the vertices in this partition, the three interfaces can
continued and they will meet each other again at aconjugatevertex.
te
a

s

e

re
t

r

a-

B. Finding the sources of a SMVP

Given a circular partitionP of a region of two-
dimensional space, all of whose~triple! vertices are aligned
we show here that, ifP admits a reciprocal figure that satis
fies orientation, thenP is a SMVP with respect to source
f i located somewhere above pointsPi . Our demonstration is
constructive, that is, we explicitly show how the sources a
intensities are determined. For this purpose we will use
inversion transformation~Appendix B! to straighten each
vertex in turn, that is, transform a circular vertex into a re
tilinear one. This rectilinear vertex is one of a SVP. Sourc
are located in thisstraight representation~Appendix A!, and
then transformed back to the original system. The intensi
ai of the corresponding SMVP are obtained in this bac
transformation, since the SMVP is invariant under inversi

Let v be an aligned vertex on which three interfac
$G12,G23,G32% meet, and$P1 ,P2 ,P3% the three points of the
reciprocal figure associated to the three bubbles sharing
vertex, as in Fig. 8. The conjugate vertexv* is obtained as
the intersection point of thecontinuationsof the interfaces,
which happens at a unique point because of alignment.
furthermorel i be the straight line throughv* andPi . We
start by showing the following:

Theorem 1. A monoparametric family of triplets of circl
$v12,v23,v31% exists, which has the following properties
~a! v12, v23, and v31 intercept each other onv* . ~b!
v i j'G i j . ~c! The intersection point qi betweenv i j andv ik
lays onl i .

The nontrivial content of the theorem is the fact that t
three intersection pointsqi of these normal circlesv i j lay on
the linesl i . For example take an arbitrary pointq1 on l1
and draw a circlev12 through q1 and v* , and normal to
G12. Let q2 be the intersection ofv12 with l2. Now draw a
circle v23 throughq2 andv* , and normal toG23. Let q3 be
its intersection withl3. Then the circlev31 through v* ,
q1, andq3 is normal toG13.

ch
e

FIG. 7. All these four circular vertices admit a reciprocal figur
Two of the vertices,~a! and ~c!, are convex, and therefore a recip
rocal figure satisfying orientation is possible. The other two are
convex, so that no reciprocal figure can satisfy orientation on th
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Proof. The demonstration is done by first performing a
inversion with centerv* and arbitrary radius, whereupon the
interfacesG i j are transformed into straight linesG i j8 meeting
at v8 ~Fig. 9!. This transformed system will be referred to a
the ‘‘straight’’ representation of that vertex. Primed name
are used in the straight representation, with the exception
v* , whose original location is kept in Fig. 9 (v* itself is
mapped tò by the inversion!. Lines originally not going
throughv* are transformed into circles throughv* , as is the
case of$S12,S23,S31%, which form the reciprocal figure in
the original system. Circlesv i j are transformed into straight
lines v i j8 going throughqi8 and qj8, respectively, onl i and
l j , which are invariant.

The inversion transformation preserves angles, therefo
circle Si j8 is normal to the now straight interfaceG i j8 . This
means that its centerLi j must lay onG i j8 . Consider the figure
formed byv8, L12, L23, andL31, and the six lines joining
them. Maxwell@20# showed that a figure made of four points
joined by six linesalwayshas a reciprocal figure~to see this,

FIG. 8. A vertexv with its reciprocal figureP1P2P3, showing
circles v i j . These circles are normal to the interfacesG i j , and
intersect each other at pointsqi on l i .

FIG. 9. Same as Fig. 8, after an inversion aroundv* . All circles
originally throughv* are now straight lines. This is the case o
interfacesG i j , and therefore we call this the ‘‘straight’’ represen
tation of the vertex.
s
of

re

just consider the centers of the four circles going throu
three of these points!. We will now identify it on Fig. 9 as
the figure formed byv* , q18 , q28 , andq38 . First we notice
that circlesSi j8 and Sjk8 intercept each other at two point
v* andPj8, both onl j . Therefore linesLi j L jk are normal to
l j , and we have identified the first three lines of the rec
rocal figure. The other three linesv i j5qi8qj8 of the reciprocal
figure have to be normal to the segmentsvLi j , so they
are normal to the interfacesG i j8 . Since the inversion pre
serves angles, this means thatv i j'G i j in the original system
~Fig. 8!.

We see that the existence of triplets of circl
$v12,v23,v31% with the above-mentioned properties is
consequence of the existence, in the straight representa
of a figure v* q18q28q38 , which is the reciprocal of
vL12L23L31. In other words, theorem 1 means that in t
straight representation, triangleq18q28q38 forms a reciprocal
figure for the rectilinear vertex. Clearly this reciprocal figu
q18q28q38 satisfies orientation if the original figureP1P2P3

satisfies orientation in the circular system. Therefore as
cussed in Appendix A, it is always possible to find thr
sourcesf i8, i51, 2, and 3, located at heightszi8 above points
qi8, such that this rectilinear vertex is a SVP with respect
them. Once these sourcesf i8 are known in the straight repre
sentation, a second inversion around the same pointv* takes
us back to the original system, and provides the origi
locationsf i of the sources.

If v123 is the first vertex to be considered in the syste
we have one degree of freedom in the determination of
circlesv i j , or equivalently of pointsqi . Once in the straight
representation, there is one more degree of freedom: the
termination ofoneof the heightszi8. We will now show that,
if this zi8 is chosen appropriately, the three back-transform
sourcesf i are located above their respective pointsPi .

Consider a planeP i that is normal toPz and contains
l i , as shown in Fig. 10. Draw a circleb i throughqi and
v* , and normal toPz . Let ui be the intersection of this
circle with the normala i to Pz , throughPi . Now under an
inversion with centerv* , point ui8 is aboveqi8, since circle
b i is transformed in a straight lineb i8, normal to Pz .
Straight linea i normal toPz, throughPi is now a circle
a i8 throughv* and ui8, and normal toPz . Its intersection
with Pz determines the imagePi8. Now we now that source
f i8 is located somewhere onb i8. The sources can be displace
vertically ~simultaneously! according to what we see in Ap
pendix A, but not independently. Fixing the heightzi8 of one
of them determines the other two uniquely. What we wan
demonstrate is that if one of the sourcesf i8 coincides with its
pointui8, then the other two also do. In order to do this, tak
for example, the sphereX̃12 through v* , f 18 , and f 28 , and
normal toPz . In the straight representation, interfaceG̃128
of the Voronoı¨ partition, with respect to sourcesf 18
and f 28 is a plane, equidistant fromf 18 and f 28 , and
normal to f 18 f 28 . This means thatG̃128 is normal toX̃12. As a
consequence, the intersectionX12 ~a circle! of X̃12 with Pz is
normal to the intersectionG128 ~a straight line! of G̃128 with
Pz . Now assume thatf 185u18 . This means thatP18PX̃12,
sincea18 is in this case contained inX̃12. But then the circle
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6872 55C. MOUKARZEL
X12 is the circleS128 ~Fig. 9! that goes throughP18 , P28 , and
v* , and is normal toG128 . This implies thatP28 is also in
X̃12, which in turn impliesf 285u28 . The same reasoning ca
be repeated for the pair of sources 1 and 3.

We have thus shown that all sourcesf i are, in the back-
transformed, original system, located above the pointsPi of
the reciprocal figure. In other words, we have shown that
given reciprocal figure is the projection of the sourcesf i on
thePz plane.

Now we have to determine the heightszi and intensities
ai . The heightszi of the sources can be found by back
transforming the sourcesf i8 from the straight system. How-
ever in practice this is not necessary. By looking at Fig.
we notice that trianglev* f iqi is a rectangle. Therefore,

zi
25uv*Pi u3uPiqi u, ~9!

which suffices to locate the sourcesf i with the sole knowl-
edge of pointsPi and qi in the original system. Knowing
now the spatial locations of the sourcesf i in three dimen-
sions, the intensitiesai follow immediately, since the vertex
v* is equidistant@21# from the three sources. This means

ai5Auv* f i u5A~ uv*Pi u3uv* qi u!1/2. ~10!

HereA is an arbitrary positive constant. Alternatively we ca
obtain the same result by using the transformation proper
@Eq. ~B2!# of theai ’s, and the fact that the intensities are a
equal in the straight system.

We have used the inversion transformation to demonstr
that the given vertex is a SMVP with respect to sourcesf i
located abovePi , and showed how the sourcesf i can be
located without the need to perform an inversion for ea
vertex explicitly. All we need is to know the location o
points qi , which we are free to choose for the first verte
under consideration. This first choice determines all sub
quentqi points, and therefore all sources. It is clear from F
10 thatuv* qi u>uv*Pi u has to be satisfied. Therefore one h
to choose the triplet of circleswi j such that this condition is
verified for the three pointsqi . If one of theqi ’s coincides
with Pi , this means that the corresponding heightzi is zero,
i.e., the sourcef i lays on thePz plane. A pointqi closer to
v* than the correspondingPi is not acceptable.

FIG. 10. Shown is a plane normal toPz and containingl i . This
figure shows how the heightzi of source f i5ui in the original
system is determined, given the positions ofPi and qi . Primed
variables correspond to positions after the inversion, that is, in
‘‘straight’’ system. Sourcesf i85ui8 are aboveqi8, and therefore the
back-transformed sourcesf i are abovePi .
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The general procedure to determine the sources can
be described. Assume we are given a circular tessella
which satisfies the required conditions of alignment and c
vexity, and that we are able to find, or are given, a recipro
figurePi for it. We start from one of the cells of the partition
as in Fig. 11. Take an arbitrary vertex to start with, for e
ample, vertexv012, and determine tentative locations fo
point q0 on l0. This fixesq1 and q2, as discussed in Sec
III B. After fixing q0, the rest of the construction is unique
determined. The locationsq0, q1, andq2 determinez0, z1,
and z2, and the corresponding intensitiesa0, a1, and a2,
through Eqs.~9! and ~10!. Now proceed to the neighborin
vertex v023. Two of the sources,f 0 and f 2 are already
known, only the heightz3 of f 3 has to be found. First one ha
to find thenew locations ofq0 and q2 when defined from
vertexv023* . In order to do this, linesl i

023 from vertexv023*
are drawn, andq0 andq2 are located using the fact that th
heightsz0 andz2 are already known. Equation~9! implies

uP0q0
~023!u5uP0q0

~012!u
uv ~012!* P0u

uv ~023!* P0u
, ~11a!

uP2q2
~023!u5uP2q2

~012!u
uv ~012!* P2u

uv ~023!* P2u
. ~11b!

Once the newq0 andq2 are known, the next step is to dra
circlesv03 andv23 through them and normal to the respe
tive interfaces. Their intersection gives the location ofq3
~this intersection always occurs onl3

023, as theorem 1
shows!. This determinesz3 anda3 using Eqs.~9! and ~10!.
This procedure of triangulation is repeated until all sourc
are located. Eventually it may happen that a pointqi is found
to be closer to the conjugate vertexv* than the correspond
ing Pi . This is not acceptable, and means that thetentative
starting position ofq0 has to be changed. It must be shifte
away fromv012* , and the whole procedure repeated. It is ea
to see that taking a large enough value ofq0 always solves
this problem.

One could ask whether this construction can be clo
self-consistently. For example, after determiningf 5 from f 0

e
FIG. 11. The pointsPi of the reciprocal figure~empty circles!

are the projections, on thexy plane, of the sourcesf i in three-
dimensional space. The linesPiPj must thus be normal to interface
G i j . Black dots indicate the location of the conjugate verticesv i jk*
for each vertexv i jk in the figure.
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55 6873GEOMETRICAL CONSEQUENCES OF FOAM EQUILIBRIUM
and f 4 in our example of Fig. 11, one can go on with th
procedure as iff 1 were unknown. Would the position off 1
determined byf 0 and f 5 be the same one as found initially
Alternatively, if we usedf 0 and f 1 to determinef 5 instead of
going around the bubble in the opposite sense, would
position be the same as found after going around the bub
The answer is yes, because of unicity. As discussed in
pendix A, the height of one of the sources of a vertex de
mines the other two uniquely. This means th
f 1 , f 2 , . . . ,f 5 are all uniquely determined byf 0.

IV. EQUILIBRATED FOAMS

In this section we show that a two-dimensional foam
equilibrium satisfies all conditions required for it to be
SMVP. In order to do this, let us first write down the equ
librium conditions for an arbitrary vertex of the foam
compact form. We will consider the case of foams with
bitrary surface tensions, and also allow forces to act on
foam’s vertices.

A. Equilibrium equations

Let vW be the location of a vertexv at which three inter-
facesG1, G2, andG3 meet, as shown in Fig. 12. Each inte
faceG i is a circle arc with radiusr i and centerCW i . It pro-
duces, onv, due to its surface tensiont i , a forceTW i of
modulus 2t i in the direction of the tangent to the film atvW .
These forcesTW i can therefore be written as

TW i522
t i
r i
KW i*52j iKW i* , ~12!

whereKW i5CW i2vW and j i52t i /r i . The asterisk here stand
for a counterclockwise rotation inp/2, so thateW x*5eW y . Let

us more generally assume that an external forceFW acts on
v. Equilibrium of all forces acting on the vertex implies

FW *1(
i51

3

j iKW i50W , i51,2,3. ~13!

FIG. 12. A generic vertexv, at which three interfacesG1, G2,
and G3 meet. We regard the pressure drops to be positive if
pressure decreases when the interface is crossed in the cou
clockwise sense of rotation aroundv. Therefore, in the case show
in this figure,r 2 and r 3 are positive, whiler 1 is negative.
ts
e?
p-
r-
t

-
e

There is still one more condition, which is related to press
equilibrium around the vertex. The pressure drop across
interface can be written as

Dpi52
t i
r i

5j i . ~14!

We will adopt the convention forDp to be positive if the
pressure decreases when crossing the interface in the c
terclockwise sense of rotation aroundv. This is of course
related to a convention for the signs of ther i . In Fig. 12,
r 1 andDp1 are negative according to this convention. Noti
that pressure jumps and radii have different signs when c
sidered from the two opposite vertices joined by a film. T
fact that the total accumulated pressure drop around a ve
has to be zero then implies

(
i51

3

j i50. ~15!

This is the pressure equilibrium condition for the verte
Equations~13! and ~15! are satisfied if the vertex is equili
brated, and together are equivalent to

FW *1(
i51

3

j i~CW i2xW !5oW, ~16!

wherexW is anarbitrary point. This is what we will call the
equilibrium condition for the vertex, and it encloses bo
force and pressure equilibrium.

B. Equilibrium implies alignment

The alignment of the centers of a two-dimensional foa
was already shown a long time ago by Plateau@22# for equal
surface tensions, and in the case of small self-standing c
ters of two and three bubbles. For the case of a cluster of
bubbles and zero load, it is a trivial consequence of symm
try @23#. The demonstration for the case of clusters of th
bubbles is referred to by Boys as being‘‘rather long and d
ficult’’ @22#.

It is not difficult to see that the alignment of the centers
in no way a property of clusters, and also not restricted
vertices with equal surface tensions and zero loads, b
general consequence of equilibrium. We will find that, und
very general conditions, such as arbitrary surface tens
and external loads applied on the vertices, if a vertex
equilibrated then the centers of the three arcs converging
lay on a line.

Consider Eq.~16!, and assume for a moment that the e
ternal load is zero. ThenC1, C2, andC3 lay on the same line,
as can be seen by takingxW5CW 1, for example. Thus all ver-
tices in equilibrium are aligned if no external force is appli
on it. This alignment property is even true under nonze
load conditions, if the force is perpendicular to the line
centers. A load satisfying such condition will be called
normal load. The alignment condition has the geometric
consequence that the interfacesG i , when continued, mee
each other again at a unique pointv* which we called the
conjugate vertex@24# of v. This also means that the verte
v could be physically realized as a self-standing cluster

e
ter-
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6874 55C. MOUKARZEL
two bubbles~by continuing its interfaces!, and is a kind of a
‘‘separability’’ condition for the static equilibrium condi
tions, in the sense that each vertex of a foam might as we
that of an isolated cluster of two bubbles. Thus a vertex
equilibrium under a normal load is aligned, or, equivalent
a vertex in equilibrium under a normal load has a conjug
vertex.

Next we would like to consider the existence of a rec
rocal figure, since this is also a condition that has to
satisfied in order for a foam to be a SMVP. This conditi
must be separately considered. The reader may easily b
examples of bubbles withn neighbors, all of whosen verti-
ces are aligned, but yet do not admit a reciprocal figure.
reason is that the attempted reciprocal figure will not in g
eral ‘‘close’’ around that bubble, the same case as descr
in Appendix A.

C. Equilibrium implies reciprocal figure

We will now show that if all vertices of a foam are equil
brated, then an oriented reciprocal figure exists for it. W
start by considering a bubble, and show that the recipro
figure can be found for it. The figure for the whole foam c
then be formed by patching together those of neighbor
bubbles. Consider a bubble withn neighbors a51,
2, . . . ,n, as shown in Fig. 13. At each vertexva of this
bubble, three filmsGa , Ga11, and Ga

a11 meet. Interface
Ga separates the central bubble from its neighbora, while
interface Ga

a11 is the limit between neighborsa and
(a11). We will assume verticesva to be in equilibrium
under arbitrarynormal loadsFW a . We can generally write
these loads as

FW a*52Ra11CW a111SaCW a1TaCW a
a11 . ~17!

That is, we have decomposed the external load of ve
va in thedependentbasis formed by the three centers of t
films meeting at the vertex. Because these centers

FIG. 13. A bubble surrounded byn neighborsa51, . . . ,n,
showing the naming convention for the interfaces. Note that fi
curvatures are of opposite signs when considered from each o
two vertices at their ends. Thus, for example,j2 appears with a
1 sign in the equilibrium condition of vertexv2, but with a2 sign
in that of v1 @see Eq.~19!#.
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aligned, and the load is normal to the line of centers,
following condition is always satisfied by the coefficients:

2Ra111Sa1Ta50. ~18!

The equilibrium condition~16! now reads

2~ja111Ra11!~CW a112xWa!1~ja1Sa!~CW a2xWa!

1~ja
a111Ta!~CW a

a112xWa!50W ,a51, . . . ,n, ~19!

and holds forarbitrary xa’s. The sign ofja is determined by
the sign convention at vertexva , thereforeja11 must ap-
pear with a minus sign in the equilibrium equation for vert
a. Since we use a dependent basis@Eq. ~17!# the coefficients
$Ra11 ,Sa ,Ta% ~the ‘‘representation’’ of the load! are not
uniquely determined for a given load. There is instead
monoparametric family of coefficients$Ra11 ,Sa ,Ta%, all
satisfying both Eqs.~17! and~18!, for each loadFa . We will
use these degrees of freedom to choose a represent
$R̃a11 ,S̃a ,T̃a% that satisfies

S̃a5R̃a , a51,2, . . . ,n. ~20!

Notice that this condition relates the coefficients of two co
secutive loads. We now show that such a representation
ways exists. We start by making the degree of freedom in
representation of the loads explicit. For arbitraryna , we add
the null vector~19! multiplied by na to the load~17!, and
obtain

FW a*52R̃a11CW a111S̃aCW a1T̃aCW a
a11 , ~21!

where

R̃a115Ra111na~Ra111ja11!, ~22a!

S̃a5Sa1na~Ra1ja!, ~22b!

T̃a5Ta1na~Ta1ja
a11!. ~22c!

Condition ~20! then implies

na115
Ra2Sa11

Sa111ja11
1na

Ra1ja11

Sa111ja11
, ~23!

which has always a solution in the generic case.
Using this representation of the loads, we can rewrite

equilibrium condition~19! as

2Qa11~CW a112xWa!1Qa~CW a2xWa!1Ea~CW a
a112xWa!50W,

a51, . . . ,n, ~24!

where

Qa5ja1R̃a , ~25a!

Ea5ja
a111T̃a . ~25b!
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55 6875GEOMETRICAL CONSEQUENCES OF FOAM EQUILIBRIUM
This amounts to hiding the loads in a redefinition of t
surface tensions and pressures:ja→Qa . As we have shown
this can always be done for aligned loads. We notice that
coefficientsEa satisfy

(
a51

n

Ea50, ~26!

as can be verified by subtracting Eq.~24! with two different
values ofxWa , and adding up the result fora51, . . . ,n.

More generally the fact that all vertices of the bubble a
in equilibrium has the consequence that

(
a51

n

Ea~CW a
a112xW0!50W ~27!

for xW0 arbitrary. Condition~27! can be generalized to an
closed path in the foam. The sum is in that case over all fi
cut by the closed path. The smallest such path, enclosin
vertex, gives the vertex equilibrium condition~16!. Now that
we have written the bubble equilibrium condition in the co
venient form~24!, and we will write an algebraic condition
for the existence of a reciprocal figure.

The reciprocal figure was defined to be a set of poi
$P0 ,P1 , . . . ,Pn%, each associated to a bubble~but not nec-
essarily contained in it!, such that the straight line passin
throughPi and Pj is normal to the interfaceG i j between
bubblesi and j . This means thatCi j , Pi , andPj are on the
same line, as in Fig. 14. We will require thatP0 andP1 be
arbitrary~with the only condition thatP0, P1, andC1 are on
a line!. This will allow us to patch together the reciproc
figures of neighboring bubbles to form that of the who
foam. This is equivalent to the translation and dilatation
grees of freedom existent in the definition of a recipro
figure for a SVP. For arbitraryP0, takeP1 anywhere on the
line (P0C1). All other points are now uniquely determine
P2 is located in the intersection of (P0C2) and (P1C12);
next, P3 is found as the intersection of (P0C3) and

FIG. 14. The same closed bubble of Fig. 13, showing the fi
centers Ci j ~empty dots! aligned in triplets, and the site
0,1, . . . ,6 ~black dots! of the reciprocal figure.
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(P2C23), etc. When the figure is closed with the last po
Pn , there is an extra condition, since it has to be the int
section of three lines: (P0Cn), and (Pn21Cn21n), and
(P1C1n). The construction of the reciprocal figure is thus
overdeterminedproblem, and would not in general be po
sible if the centersCi j were arbitrarily located. Let us now
write the conditions for this reciprocal figure to close, in
algebraic form. The pointsPi of the reciprocal figure are
determined by a set of coefficients$Aa ,Ba% satisfying the
following conditions:

~PW a2PW 0!5Aa~CW a2PW 0!, ~28a!

~PW a112PW a!5Ba~CW a
a112PW a!. ~28b!

Substituting Eq.~28a! into Eq. ~28b!, we obtain

2Aa11~CW a112PW 0!1Aa~12Ba!~CW a2PW 0!

1Ba~CW a
a112PW 0!50W . ~29!

We will now show that the equilibrium conditions~24! en-
sure that Eq.~29! always has a solution, and therefore tha
reciprocal figure exists. Comparison with Eq.~24! lets us
conclude that a solution will exist forP0 arbitrary, if we are
able to find a set of coefficients$Aa ,Ba% that satisfy

Qa11

Aa11
5

Qa

Aa~12Ba!
5
Ea

Ba
5ma , a51, . . . ,n. ~30!

This is equivalent to

Qa115maAa11 , ~31a!

Qa5maAa~12Ba!, ~31b!

Ea5maBa . ~31c!

It is not difficult to see that these equations are satisfie
ma are related by

ma115ma1Ea . ~32!

Starting from anarbitrary m1, this recursion relation gives u
the following values ofm. Once all are known, Eq.~31a!
provides the values of theAa , which in turn determine
$P1 , . . . ,Pn% using Eq.~28a!. The condition that the figure
can be closed isPa1n5Pa , and is equivalent to
ma1n5ma . This condition is satisfied because Eq.~26!
holds, and therefore is a consequence of equilibrium.

If we were given an arbitrary circular partition, it woul
not in general be possible to find a reciprocal figure for
The fact that this CP is an equilibrated foam imposes g
metrical constraints on it, ensuring, for example, that it a
mits a reciprocal figure.

We have thus shown that, for an arbitrary equilibrat
bubble, it is always possible to find a reciprocal figure. W
can arbitrarily fixP0 sincexa in Eq. ~24! can be arbitrarily
chosen, and we can also choose the ‘‘scale’’uP0P1u of the
drawing at will, since the starting valuem1, that fixes this
scale, is arbitrary. Therefore the reciprocal figures of nei
boring bubbles can be patched together to form a recipro



in
s
t

tw

d
at
al
de
re

b

e-

is

d

em
th
r
c
o
ne

le
o

r

o
ri-
o

b
rc
ur
r

in
rt
ir-
m
o
a

s

es,
in
t
ul-

s
g a
i-
o-

-
e

n
a
to
are
e-
is
-

of

to
he
n
lu-
to

h-
n-

t

6876 55C. MOUKARZEL
figure for the whole foam. Each selection of a starting po
P0 and a ‘‘scale’’ uP0P1u determines the other point
uniquely, therefore there are three degrees of freedom in
determination of the reciprocal figure. OnceP0 andP1 are
chosen, all other points are found as intersections of
lines passing through the centersCi j and one already existing
point Pi .

D. Orientation condition

Now we have to show that it is always possible to fin
among all possible reciprocal figures, at least one that s
fies orientation as defined in Sec. II D. In the first place, if
the surface tensions are positive, then all films will be un
traction, and therefore the vertices will be convex. If the
are nonconvex vertices in the foam~which would happen if
some of the films are compressed instead of stretched! then
we know that it is not possible to satisfy orientation~Fig. 7!.
Positive surface tensions is thus a necessary condition@25#
for the foam to be a SMVP, although their modulus can
arbitrary for each film.

The orientation condition could fail in the first place b
cause a centerCi j lays in between two pointsPi andPj . It is
always possible to avoid this by choosingP1 close enough to
P0. In this way all following pointsPi are confined within a
~arbitrarily chosen! small region of space where no center
located. This ensures that no centerCi j lays betweenPi and
Pj . Now regarding the second part of the orientation con
tion ~Sec. II D!, consider a vertexv123, which is convex and
aligned. Two orientations of the triangleP1P2P3 are pos-
sible, as shown in Figs. 7~a! and 7~c!. Note that both consti-
tute reciprocal figures for both vertices, but only one of th
satisfies orientation in each case. In our construction of
reciprocal figure for the whole foam, we can decide the o
entation of the initial triangle, choosing the one that respe
orientation. The question is now if the correct orientation
this starting triangle ensures that of all subsequent o
whose locations are determined byP0 and P1. To demon-
strate that this is indeed the case, we note that the triang
Fig. 7~a!, if considered as a reciprocal figure for the vertex
Fig. 7~c!, has all three segmentsPiPj wrongly oriented. The
point we want to make is that, if the vertex is convex, the
are only two possibilities: either all pairsPiPj satisfy orien-
tation, or all are wrongly oriented. Then if one of the pairs
a triangle forming part of a reciprocal figure is correctly o
ented, the other two must necessarily also be. This dem
strates that if the starting pairP0P1 is chosen with the cor-
rect orientation, then all subsequent triangles must
correctly oriented, since they share at least a pair of sou
with one preexisting triangle. Therefore in order to ens
correct orientation of the whole figure, it is enough to co
rectly choose the orientation of the first pair.

V. DISCUSSION

A dissection of space into cells separated by circular
terfaces that meet at triple vertices is called a circular pa
tion ~CP!. A two-dimensional foam therefore defines a c
cular partition of two-dimensional space. The equilibriu
conditions for the foam impose geometrical constraints
this CP. We have shown here that the CP defined by
t

he

o

,
is-
l
r

e

i-

e
i-
ts
f
s,

of
f

e

f

n-

e
es
e
-

-
i-

n
n

equilibrated foam isaligned, and admits anoriented recip-
rocal figure. This result is valid in general for heterogeneou
foams, each of whose films may have an arbitrary~positive!
surface tension, and even if loads are applied on the vertic
with the sole requirement of equilibrium. We have seen
Sec. III B that any CP satisfying the conditions of alignmen
and existence of oriented reciprocal figure is a sectional m
tiplicative Voronoı¨ partition ~SMVP!. A SMVP is a plane
cut of a multiplicative partition, thus two-dimensional foam
are plane cuts of three-dimensional foams, these last bein
multiplicative partition with respect to sources in three d
mensions. Therefore, given an arbitrary equilibrated tw
dimensional foam, it is always possible to find sources$ f i%
in three-dimensional space, and amplitudesai such that the
given foam is a SMVP with respect to those sources.

A first implication of this correspondence is the identifi
cation of a set of degrees of freedom for the foam: th
intensitiesai and locations of the sourcesf i in three dimen-
sions. This allows a more natural description of a foam, tha
the one that is done in terms of films and vertices. When
foam is interpreted as a tessellation of space with respect
some sources, we see that the foam’s films and vertices
secondary constructions, and their evolution is a cons
quence of that of the sources. The dynamical description
conceptually simpler using the SMVP interpretation. For ex
ample, the processes of neighbor switching (T1) and cell
disappearance (T2) are described in a unified manner~Fig.
15!. Both are due to the fact that a fourfold vertex in 3D
crosses the projection planePz . Depending on the spatial
orientation of the vertex with respect toPz , this is seen as a
T1 or T2 process.

An evolving foam can be seen as a particular instance
a dynamical random lattice@26#, in which the evolution of a
cellular structure is fixed by assigning a given dynamics
the sources of a mathematically defined tessellation. In t
case of foams the dynamics is usually fixed by gas diffusio
across the membranes. Alternatively, other dynamical evo
tion rules may also be interesting, but in any case one has

FIG. 15. A three-dimensional multiplicative Voronoı¨ partition
gives rise to vertices which simultaneously belong to four neig
boring bubbles in a generic situation. Six spherical interfaces co
verge at these vertices. When one such vertex~white dot! crosses
the projection planePz , depending on its orientation this can resul
either in~a! a T2 process~disappearance of a triangular bubble! or
~b! a T1 process~neighbor switching! for the two-dimensional
foam.
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make the translation to obtain the source’s dynamics.
next step is then to find, for a given proposed dynamic e
lution for the foam, the corresponding dynamics@27# for the
sources and intensities.

Foams are usually studied inside a bounded region
cage, which imposes the only constraint that the films
normal to its boundary. Boundaries of this kind do not affe
the fact that the foam is a SMVP. We have shown that
result holds with the sole requirement of vertex equilibriu
It is obvious that SMVP’s are always closed on themselv
forming a self-standing cluster, that is, there are no open
ends. This implies that even bounded foamsmustbe a region
of a larger self-standing cluster of bubbles that is closed
itself, and everywhere equilibrated. The point is not trivial
that it ensures that all films ending at the boundary can
continued, eventually forming~phantom! vertices, and that
the resulting foam will have all its vertices in equilibrium
We see then that there is no fundamental difference betw
bounded and self-standing foams, since all foams are reg
of a self-standing cluster. This does not mean that the bou
aries have no effect, which would of course be false. If
foam’s dynamic inside the cage is, for example, produced
gas diffusion across the films, the evolution of the ‘‘pha
tom’’ bubbles existing as continuations of the physical foa
outside the cage, willnot follow this dynamic, but a different
one, which is determined by the constraint that the films
normal to the cage’s boundaries.

In the field of joint-bar structures, an old result due
Maxwell @20,28# states that if a lattice accepts a reciproc
figure then it can support a self-stress, and conversely. M
recently Ash and Bolker@15# showed that the existence of
reciprocal figure is sufficient condition for the lattice to be
sectional Voronoı¨ partition. In this case there is the add
tional requirement that all vertices are convex, therefore
stresses in the lattice must be of the same sign, and the la
can be an equilibrated spider web. A chain of results t
span a century allow us to see equilibrated spider web
SVP’s, and conversely. The alert reader may have not
that equilibrated foams can be seen as a kind of ‘‘gene
ized’’ spider webs, in which the pressure difference betwe
cells is the new ingredient, and is equilibrated by the cur
ture of the interfaces. It therefore turns out to be no surp
that these generalized spider webs~foams! are equivalent to
an appropriate generalization of SVP’s, namely, SMVP
which include a multiplicative constant that gives rise
curved interfaces.
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APPENDIX A: RECOGNITION PROBLEM
FOR RECTILINEAR PARTITIONS

A classification of space into cellsV i separated by recti
linear interfacesG i j is called arectilinear partitionof space.
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Given a rectilinear partitionP of the plane, areciprocal fig-
ure R(P) is a planar graph composed of sitesi joined by
edges (i j ) satisfying@20,15# the conditions that~a! sitesi of
R are in one-to-one correspondence with cellsV i of P, ~b!
edges (i j ) of R are in one-to-one correspondence with i
terfacesG i j of P, and ~c! edges (i j ) of R are normal to
interfacesG i j of P.

Clearly a reciprocal figure is defined up to arbitrary glob
dilatations and translations, since angles are not change
them. Therefore, ifP admits a reciprocal figure, there ar
three degrees of freedom in its determination@20,15#. An
arbitrary partitionP will not in general admit a reciproca
figure. We can see this with a simple example. Draw
arbitrary polygonal cellV0 with n faces, and take arbitrary
rectilinear interfaces between itsn neighbors~Fig. 16!. Now
take an arbitrary pointx0 on the plane to start with, and
assign it to the central cell. This starting point is arbitra
since a reciprocal figure is defined up to arbitrary trans
tions. The othern points $x1 , . . . ,xn% associated to the ex
ternal cells must be somewhere on then rays r i stemming
from x0 and normal to the facesG0i of V0. The global length
scale is also arbitrary, so that, say,x0x1 can be freely chosen
Then we choosex1 somewhere onr 1. Now point x2 is de-
termined as the intersection of rayr 2 with the normal to face
G12 going throughx1. This can be repeated to obtain alln
external points, but in general the figure will notclose, that
is, segmentxnx1 will not be normal to interfaceG1n , whose
orientation is arbitrary.

The planar graph formed by joining the sourcesPi of a
SVP with edges (i j ), one for each nonempty interfaceG i j ,
constitutes a reciprocal figure for the SVP. Therefore ev
SVP has a reciprocal figure.

Recently Ash and Bolker showed that the existence o
reciprocal figure satisfyingorientation @15# is also a
sufficientcondition forP to be a SVP. A reciprocal figure
R satisfies orientation if for each bondi j , the sitesi and j
are oriented in the same way as cellsV i andV j are with
respect toG i j . P admits an oriented reciprocal figure^⇒& P
is a SVP. This result solves the recognition problem
SVP’s. The orientation condition can only be satisfied if
vertices of P are convex. We will say that a vertex is

FIG. 16. An arbitrary rectilinear partition will not in genera
admit a reciprocal figure. The one in this example does not adm
reciprocal figure, and therefore cannot be a sectional Voronoı¨ par-
tition.
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6878 55C. MOUKARZEL
convex if the internal angles formed by the interfaces are
smaller thanp. Figure 17 shows two partitions with thre
cells. One of them is convex, the other is not. In the sec
case it is not possible to find a reciprocal figure that satis
orientation, and therefore it cannot be a SVP.

Given a rectilinear partitionP* , and an oriented recipro
cal figure for it ~as in Fig. 18!, it is always possible@15# to
find sources$ f i% in three dimensions, located at heightszi
above the pointsPi , such thatP* is the section withPz of
a three-dimensional VP with respect to$ f i%. The procedure
to determine the heightszi can be easily described. Vertice
v i jk of P* will be equidistant from sourcesf i , f j , and f k
~see Fig. 19!. Start from an arbitrary vertex, say,v i jk , and
draw a spherical surface ofarbitrary radius r i jk5r 0 with
center at that vertex. Now define sourcesf i , f j , and f k as
the intersections of this surface with the verticals~normals to
Pz) through Pi , Pj , and Pk , respectively. Next go to a
neighboring vertex, which shares two sources with this o
Let us call itv i jm . For this vertex, only sourcef m has to be
located, sincef i and f j are known. Draw a spherical surfac

FIG. 17. Both these partitions with three cells admit a recipro
figure. The one on the left does not satisfy orientation and there
cannot be part of a sectional Voronoı¨ partition. The one on the righ
satisfies orientation, and therefore it is a SVP. It is then possibl
find sourcesf 1, f 2 , and f 3 in three-dimensional space, such th
this partition is obtained as the cutz50 of a three-dimensiona
Voronoı̈ partition with respect to$ f i%. Sourcesf i will be located at
heightszi above points$1,2,3% in this figure.

FIG. 18. A convex rectilinear partition~thick lines! with cells
$A,B, . . . ,I % and its associated reciprocal figure~thin lines! with
sites$a,b, . . . ,i % ~black dots!. This reciprocal figure~or any other
figure obtained from dilatation and translation of this one! satisfies
orientation, and therefore the partition is a sectional Voronoı¨ parti-
tion. Sources of this SVP are located above pointsPi .
ll

d
s

e.

with centerv i jm and containingf i and f j . Both will be si-
multaneously contained, since interfaceG i j , on whichv i jm
is located, is equidistant fromf i and f j . The radiusr i jm of
this surface is determined by the locations off i and f j ,
which in turn are fixed byr 0. Its intersection with the vertica
nm throughPm determinesf m . If this spherical surface doe
not intersectnm , just choose a larger value ofr 0 and start all
over again~from the initial vertex!. The construction pro-
ceeds in this manner until all sources have been determi
As mentioned above, the initial value ofr 0 is tentative, in the
sense that it may have to be modified~increased! if, at some
point during the procedure, a normal line is not cut by t
corresponding spherical surface from the vertex. It is eas
see that increasing the value of the starting radiusr 0 is al-
ways enough to solve this problem. There is thus one deg
of freedom in this construction (r 0). We conclude that, given
a two-dimensional partitionP that admits a reciprocal figure
there is a four-parametric family of source locations su
thatP is a SVP with respect to them. Three degrees of fr
dom come from the determination of the reciprocal figu
itself ~since a dilatation and/or translation of a reciproc
figure is again a reciprocal figure! and the last one fromr 0.
This last degree of freedom results from the fact that a S
is invariant if all heights are changed according
zi
2→zi

21a2 with a arbitrary @see Eqs.~3! and ~4!#.
Reciprocal figures were first studied by Maxwell@20,28#

in relation to the rigidity of bar-joint frameworks in th
plane. Maxwell pointed out that frameworks that have a
ciprocal figure are able to support a self-stress, and c
versely. The reason is that the edges of the reciprocal fig
can be taken to represent forces transmitted by the edge
the original framework~rotated byp/2). Since these edge
form closed polygons, the existence of a reciprocal fig
implies the existence of an equilibrated set of intern
stresses in the absence of an external load. The additio
the orientation condition~a condition not required by Max
well’s definition of a reciprocal figure! has the statical con
sequence that all signs of the stresses are equal, for exa
all traction or all compression. It is clear that no equilibriu
is possible in the case of Fig. 17~a! if all three stresses are t

l
re

to
FIG. 19. Given an oriented reciprocal figure$P1 ,P2 ,P3%

~white dots! for a rectilinear partition~interfacesG i j ), the sources
f i in three-dimensional space can be located above the pointsPi .
These sources must be equidistant from the vertex, therefore
are at the intersections~black dots! of a spherical surface centere
at the vertexv123 with the normals throughPi .
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have the same sign. Figure 17~b!, on the other hand, can b
in equilibrium under compression or traction on all thr
interfaces. The conclusion is that every SVP is an equi
rium configuration for a spider web@15#, and conversely,
each such equilibrium configuration is a SVP. The existe
of a reciprocal figure has also projective consequen
which have been studied by Crapo@29# and Whiteley@30#.

APPENDIX B: INVERSION TRANSFORMATION

Here we briefly describe a geometric transformat
calledinversion@18#. We will find it extremely useful for our
purpose of discussing circular partitions. An inversion w
radiusk around a pointO located atrW0 transforms a point
P located atrW01rW into a pointP8 at rW01rW8 satisfying

rW85
k2

r 2
rW, ~B1!

where r5urWu. The sphere of radiusk and centered atO is
invariant under this transformation, while the inside and o
side of this sphere are interchanged. Obviously this trans
mation is self-inverse. Let us now describe some of the pr
erties of this transformation in two dimensions@18#. Most of
them apply trivially in higher dimensions.

~i! Circles not throughO are transformed in circles no
throughO.

~ii ! Circles throughO are transformed into straight line
not throughO.

~iii ! Straight lines not throughO are transformed in
circles throughO.

~iv! Straight lines throughO are invariant.
~v! Angles are preserved~in modulus! by the inversion.
Given two pointsP1 andP2 at distancesr 1 and r 2 from

the inversion center, the distanced12 between them trans
forms as

d128 5d12
k2

r 1r 2
. ~B2!
.

-

e
s,

t-
r-
p-

Using this result, we can easily see that the inversion i
‘‘symmetry’’ of a MVP in any dimension if the intensities
are also appropriately transformed@15#. More precisely, a
MVP of Rn with respect to sources$Pi% with intensities
$ai% is transformed by an inversion into a MVP with respe
to $Pi8% with intensities$ai8%, where the intensities satisfy

ai85
ai
r i
A0 . ~B3!

HereA0 is an arbitrary prefactor, the same for allai ’s, and
r i is the distance between sourcei and the inversion cente
O. To see this, it suffices to demonstrate that ifxPG i j then
after an inversion,x8PG i j8 , which is easily done using Eqs
~6!, ~B2!, and~B3!. The inversion transformation is of cours
also a symmetry of the SMVP~Sec. II D!, if the inversion
centerO is on the cutting planePz , since in this case the
inversion leaves this plane invariant.

If the inversion centerO happens to be located on a
interfaceG i j of a MVP ~initially a spherical surface!, the
transformed interfaceG i j8 is a plane not throughO. The re-
sulting interface thus corresponds to a Voronoı¨ partition
with respect to sourcesi and j in their new locations. There
fore the transformed intensitiesai8 andaj8 have to be equa
after the inversion, which is verified using Eq.~B3!,

OPG i j⇒
ai
r i

5
aj
r j

⇒ai85aj8. ~B4!

In the same way a SMVP with respect to two sourcesi and
j is transformed into a SVP ifOPG i j . The intensitiesai are
transformed according to Eq.~B3!, wherer i is the distance
betweenO and sourcef i in three-dimensional space. Th
way in which heightszi transform is easily found using Eq
~B1!. Notice that if the inversion center coincides with th
location of a conjugate vertexv* , then the transformed par
tition has a rectilinear vertex, since three interfaces are
multaneously transformed into straight lines. We will u
this property of the inversion transformation when solvi
the recognition problem for SMVP’s in Sec. III B.
au-

t.

n-
@1# N. Rivier, Philos. Mag. B47, L45 ~1983!.
@2# D. Weaire and N. Rivier, Contemp. Phys.25, 59 ~1984!.
@3# J. Glazier and D. Weaire, J. Phys. Condens. Matter4, 1867

~1992!.
@4# J. Stavans, Rep. Prog. Phys.56, 733 ~1993!.
@5# C. S. Smith, Sci. Am.190, 58 ~1954!.
@6# C. S. Smith,Metal Interfaces~American Society of Metals,

Cleveland, 1952!.
@7# D. Weaire and J. Kermode, Philos. Mag. B48, 245 ~1983!; J.

Kermode and D. Weaire, Comput. Phys. Commun.60, 75
~1990!; T. Herdtle and H. Aref, J. Fluid Mech.241, 233
~1992!.

@8# H. Flyvbjerg and C. Jeppesen, Phys. ScriptaT38, 49 ~1991!;
H. Flyvbjerg, Physica A194, 298 ~1993!; Phys. Rev. E47,
4037 ~1993!.

@9# K. Kawazaki, T. Nagai, and K. Nakashima, Philos. Mag. B60,
399 ~1989!; K. Kawasaki, Physica A163, 59 ~1990!.

@10# A. Okabe, B. Boots, and K. Sugihara,Spatial Tessellations
Concepts and Applications of Voronoi Diagrams~Wiley, New
York, 1992!.

@11# H. Honda, J. Theor. Biol.72, 523 ~1978!.
@12# V. Icke and R. van de Weygaert, Astron. Astrophys.184, 16

~1987!.
@13# H. Telley, Ph.D. thesis, Ecole Polytechnique Federale de L

sanne, 1989~unpublished!.
@14# Hiroshi Imai, Masao Iri, and Kazuo Murota, SIAM J. Compu

14, 93 ~1985!.
@15# Peter F. Ash and Ethan D. Bolker, Geom. Dedicata20, 209

~1986!.
@16# B. N. Boots, Economic Geography 248~1979!.
@17# C. Moukarzel, Physica A199, 19 ~1993!.
@18# H. S. M. Coxeter,Introduction to Geometry, 2nd ed.~Wiley,

New York, 1989!.
@19# A configuration (pg ,lp) is formed byp points andl lines,

such that each line is adjacent top points, and each point is
adjacent tog lines. See for example, D. Hilbert and S. Coh



he

re

ys.

6880 55C. MOUKARZEL
Vossen,Geometry and the Imagination~Chelsea, New York,
1952!, Chap. III.

@20# J. C. Maxwell, Philos. Mag.4, 250 ~1864!.
@21# Within our generalized notion of distance, that is, including t

multiplicative constants.
@22# C. Vernon Boys,Soap Bubbles~Dover, New York, 1959!, pp.

120–127; reprinted inThe World of Mathematics~Tempus
Books of Microsoft Press, 1988! Vol. II, pp. 883–886.

@23# D’arcy Wentworth Thompson,On Growth and Form~Cam-
bridge University Press, Cambridge, 1961!, p. 96.
@24# This is called the ‘‘phantom vertex’’ in@15#.
@25# Although it is statically unstable, a foam all of whose films a

under compression would also be geometrically possible.
@26# K. Lauritsen, C. Moukarzel, and H. J. Herrmann, J. Ph

~France! I 3, 1941~1993!.
@27# C. Moukarzel~unpublished!.
@28# J. C. Maxwell, Trans. R. Soc. Edinburgh26, 1 ~1869!.
@29# Henry Crapo, Struct. Top.1, 26 ~1979!.
@30# Walter Whiteley, Struct. Top.1, 46 ~1979!.


